• Title/Summary/Keyword: GPx

Search Result 445, Processing Time 0.029 seconds

Effects of Calcium on Nitric oxide (NO)-induced Adventitious Rooting Process in Radish (Raphanus sativus L.) Cotyledons (무 (Raphanus sativus L.) 자엽에서 산화질소 (Nitric oxide)에 의해 유도된 부정근 형성과정에 대한 칼슘의 효과)

  • Jin, Chang-Duck
    • Journal of Plant Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.213-221
    • /
    • 2007
  • The treatment of radish cotyledons with a nitric oxide (NO)-releasing substance, sodium nitroprusside (SNP) resulted in an increased adventitious root development in a dose-dependent manner. However, this NO-mediated enhancement effect was reversed when either 0.5 mM EGTA (an extracellular $Ca^{2+}$ chelator) or 0.1 mM $LaCl_3$ (a calcium channel blocker) was applied with $50\;{\mu}M$ SNP. Our results also showed that guaiacol peroxidase (GPX) and syringaldazine peroxidase (SPX) activities, which are known to play a key role in rooting, were more largely increased during adventitious root induction in the cotyledons treated with SNP. However, the treatment of cotyledons with SNP plus $LaCl_3$ inhibited the SNP-induced increases in the activities of both GPX and SPX. Trifluoperazine (TFP), an antagonist of calmodulin (a specific calcium-binding protein), also delayed adventitious root formation and significantly reduced the root length and number of the SNP-treated cotyledons as well as the deactivation of GPX and SPX enzymes. In conclusion, our results suggest that calcium is involved in the NO response leading to induction of adventitious root through a regulation of GPX and SPX.

Effect of Aerobic Exercise with Resistance Exercise Programs on Blood MDA and SOD, GPx Activities in Elderly Women (유산소 운동을 병행한 근 저항성 운동이 노인 여성의 혈중 MDA 및 SOD, GPx 활성에 미치는 영향)

  • Nan, Sang-Nam;Kim, Jong-Hyuck;Ji, Min-Cheul
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.391-398
    • /
    • 2009
  • The purpose of this study was to investigate the effects of aerobic exercise(folk dance) with resistance exercise(elastic band) for 12 weeks on blood MDA concentration and SOD GPx activities in the elderly women. The subjects consisted 12 elderly women between 65-75 years exercise were folk dance(HRmax 50-60% levels, 60min, two per a week) and elastic band(yellow band, 60min, two per a week) program for 12 weeks. SOD, GPx activities in the before combined exercise were significantly increased than that in after combined exercise. These results show that aerobic exercise with resistance exercise program in considered to contribute enforced of antioxidant enzyme system by increased SOD and GPx activities in elderly women.

Production of Selenium Peptide by Autolysis of Saccharomyces cerevisiae

  • Lee Jung-Ok;Kim Young-Ok;Shin Dong-Hoon;Shin Jeong-Hyun;Kim Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1041-1046
    • /
    • 2006
  • Selenium-containing peptide (selenium peptide) was produced by autolysis of total proteins of Saccharomyces cerevisiae grown with inorganic selenium. Selenium peptide exhibited antioxidant activity as a glutathione peroxidase (GPx) mimic, and its activity was dependent on the hydrolysis methods. The GPx-like activity of the hydrolyzed selenium peptide increased 2.7-folds when digested by protease, but decreased by acid hydrolysis. During the autolysis of the yeast cell, the GPx-like activity and selenium content increased 4.3- and 2.3-folds, respectively, whereas the average molecular weight (MW) of selenium peptide decreased 70%. The GPx-like activity was dependent on the MW of selenium peptide and was the highest (220 U/mg protein) at 9,500 dalton. The maximum GPx-like activity (28,600 U/g cell) was obtained by 48 h of autolysis of the cells, which were precultured with 20 ppm of selenate. Selenium peptide showed little toxicity, compared with highly toxic inorganic selenium. These results show the potential of selenium peptide as a nontoxic antioxidant that can be produced by simple autolysis of yeast cells.

Effects of polyamines on hydrogen peroxide-scavenging enzymes in radish seedling plants under paraquat stress (Paraquat 스트레스를 받는 무 (Raphanus sativus L) 유식물에서 H2O2 분해 효소에 대한 폴리아민의 효과)

  • Jin, Chang-Duck
    • Journal of Plant Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.149-156
    • /
    • 2009
  • Application of exogenous polyamines (PAs) reduced the paraquat (PQ)-induced cotyledon injuries in radish seedling plants with 1 mM spermidine (Spd) being the most effective protectant. PQ injury symptoms in the cotyledons, e.g., large accumulation of $H_2O_2$, and losses of fresh weight, chlorophyll, and proteins, were significantly alleviated. Likewise, analysis of $H_2O_2$-scavenging enzymes such as catalase (CAT) and guaiacol peroxidase (GPX) showed that pretreatment with Spd among PAs remarkably increased total CAT activity and strongly retarded PQ-induced rapid decline in total GPX activity. In a native gel assay, one CAT isozyme (CAT1) and two GPX isozymes (GPX1 and a newly synthesized GPX isozyme) proved to be more responsible for PQ tolerance, as manifested by the strong increases in their activities by Spd pretreatment. Based on these results, we can suggest that PAs (especially 1 mM Spd) may function as antioxidant protectors by invoking CAT and GPX enzymes which control the endogenous $H_2O_2$ level in radish cotyledons exposed to PQ.

Distinct functional roles of peroxiredoxin isozymes and glutathione peroxidase from fission yeast, Schizosaccharomyces pombe

  • Kim, Ji-Sun;Bang, Mi-Ae;Lee, Song-Mi;Chae, Ho-Zoon;Kim, Kang-Hwa
    • BMB Reports
    • /
    • v.43 no.3
    • /
    • pp.170-175
    • /
    • 2010
  • Chaperone;Glutathione peroxidase;Peroxiredoxin;Schizosaccharomyces pombe;Thioredoxin peroxidase;To investigate the differences in the functional roles of peroxiredoxins (Prxs) and glutathione peroxidase (GPx) of Schizosaccharomyces pombe, we examined the peroxidase and molecular chaperone properties of the recombinant proteins. TPx (thioredoxin peroxidase) exhibited a capacity for peroxide reduction with the thioredoxin system. GPx also showed thioreoxin-dependent peroxidase activity rather than GPx activity. The peroxidase activity of BCP (bacterioferritin comigratory protein) was similar to that of TPx. However, peroxidase activity was not observed for PMP20 (peroxisomal membrane protein 20). TPx, PMP20, and GPx inhibited thermal aggregation of citrate synthase at 43$^{\circ}C$, but BCP failed to inhibit the aggregation. The chaperone activities of PMP20 and GPx were weaker than that of TPx. The peroxidase and chaperone properties of TPx, BCP, and GPx of the fission yeast are similar to those of Saccharomyces cerevisiae. The fission yeast PMP20 without thioredoxin-dependent peroxidase activity may act as a molecular chaperone.

Zinc and Selenium Requirements for Glutathione Peroxidase Activity and Cell Survival in Chinese Hamster Ovary Cells Overexpressing Metallothionein

  • Kwun, In-Sook;John R. Arthur;John H. Beattie
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.1
    • /
    • pp.36-39
    • /
    • 2003
  • Many defined cell culture media were formulated over 3() years ago and may be deficient in certain micronutrients whose essentiality has only subsequently been recognised. The objective of this study was to evaluate whether alpha-minimal essential medium (MEM) supplemented with 10% foetal bovine serum contained sufficient selenium for optimal activity of the selenium containing enzymes cytosolic glutathione peroxidase (cGPx) and phospholipid hydroperoxide glutathione peroxidase (PHGPx) in cultured Chinese hamster ovary (CHO) cells. Additionally, the effect of zinc deficiency and metallothionein (MT) overexpression on cGPx and PHGPx activity was studied. The addition of 100 nM of selenous acid to the culture medium increased cGPx expression by 10-fold and PHGPx by about 2-fold in both wild-type CHO-K1 cells and CHO-K1 cells overexpressing mouse MT-1. Zinc deficiency had no significant effect on enzyme activity, but cells overexpressing mouse MT-1 had higher levels of cGPx activity. Zinc deficiency decreased cell survival but overexpression of MT-1 was partially protective, probably because its presence in quantity favoured the uptake, sequestration and cellular retention of any remaining zinc. This study demonstrates that selenium in complete alpha-MEM is insufficient for optimal cGPx and PHGPx activity and may compromise the cellular response to oxidative stress.

Fumonisin B1-Induced Toxicity Was Not Exacerbated in Glutathione Peroxidase-1/Catalase Double Knock Out Mice

  • Yayeh, Taddesse;Jeong, Ha Ram;Park, Yoon Soo;Moon, Sohyeon;Sur, Bongjun;Yoo, Hwan-Soo;Oh, Seikwan
    • Biomolecules & Therapeutics
    • /
    • v.29 no.1
    • /
    • pp.52-57
    • /
    • 2021
  • Fumonisin B1 (FB1) structurally resembles sphingolipids and interferes with their metabolism leading to sphingolipid dysregulation. We questioned if FB1 could exacerbate liver or kidney toxicities in glutathione peroxidase 1 (Gpx1) and catalase (Cat) knockout mice. While higher serum levels of thiobarbituric acid reactive substances (TBARS) and sphinganine (Sa) were measured in Gpx1/Cat knockout mice (Gpx1/Cat KO) than wild type mice after 5 days of FB1 treatment, serum levels of alanine aminotransferase (ALT), sphingosine-1 phosphate (So-1-P), and sphinganine-1 phosphate (Sa-1-P) were found to be relatively low. Although Sa was highly elevated in Gpx1/Cat KO mice and wild mice, lower levels of So and Sa were found in both the kidney and liver tissues of Gpx/Cat KO mice than wild type mice after FB1 treatment. Paradoxically, FB1-induced cellular apoptosis and necrosis were hastened under oxidative stress in Gpx1/Cat KO mice.

Mountain-cultivated ginseng protects against cognitive impairments in aged GPx-1 knockout mice via activation of Nrf2/ChAT/ERK signaling pathway

  • Bao Trong Nguyen;Eun-Joo Shin;Ji Hoon Jeong;Naveen Sharma;Ngoc Kim Cuong Tran;Yen Nhi Doan Nguyen;Dae-Joong Kim;Myung Bok Wie;Yi Lee;Jae Kyung Byun;Sung Kwon Ko;Seung-Yeol Nah;Hyoung-Chun Kim
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.561-571
    • /
    • 2023
  • Background: Escalating evidence shows that ginseng possesses an antiaging potential with cognitive enhancing activity. As mountain cultivated ginseng (MCG) is cultivated without agricultural chemicals, MCG has emerged as a popular herb medicine. However, little is known about the MCG-mediated pharmacological mechanism on brain aging. Methods: As we demonstrated that glutathione peroxidase (GPx) is important for enhancing memory function in the animal model of aging, we investigated the role of MCG as a GPx inducer using GPx-1 (a major type of GPx) knockout (KO) mice. We assessed whether MCG modulates redox and cholinergic parameters, and memory function in aged GPx-1 knockout KOmice. Results: Redox burden of aged GPx-1 KO mice was more evident than that of aged wild-type (WT) mice. Alteration of Nrf2 DNA binding activity appeared to be more evident than that of NFκB DNA binding activity in aged GPx-1 KO mice. Alteration in choline acetyltransferase (ChAT) activity was more evident than that in acetylcholine esterase activity. MCG significantly attenuated reductions in Nrf2 system and ChAT level. MCG significantly enhanced the co-localization of Nrf2-immunoreactivity and ChAT-immunoreactivity in the same cell population. Nrf2 inhibitor brusatol significantly counteracted MCG-mediated up-regulation in ChAT level and ChAT inhibition (by k252a) significantly reduced ERK phosphorylation by MCG, suggesting that MCG might require signal cascade of Nrf2/ChAT/ERK to enhance cognition. Conclusion: GPx-1 depletion might be a prerequisite for cognitive impairment in aged animals. MCG-mediated cognition enhancement might be associated with the activations of Nrf2, ChAT, and ERK signaling cascade.

Gene Expression of Glutathione Peroxidase in $Saccharomyces$ $cerevisiae$ Treated with $N$-acetyl-L-cysteine and Gamma-rays ($Saccharomyces$ $cerevisiae$에서 $N$-acetyl-L-cysteine 처리와 감마선 조사에 따른 Glutathione Peroxidase 유전자 발현)

  • Park, Ji-Young;Baek, Dong-Won;Nili, Mohammad;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.258-264
    • /
    • 2011
  • Glutathione (GSH) has important roles in cellular defense against oxidative stress, 1) direct scavenging of reactive oxygen species (ROS), and 2) coenzyme of ROS scavenging enzyme like glutathione peroxidases (GPx). GSH peroxidase reduces free hydrogen peroxide to water using 2GSH. $N$-acetyl-L-cysteine (NAC), one of the antioxidants, is used as a precursor for intracellular GSH. In this study, relation of GSH, NAC, and GSH peroxidase was investigated through transcriptional expression of $GPX1$ and $GPX2$, which are GSH peroxidase encoding genes, in yeast cells treated with 0 mM to 20 mM of NAC or in combination with 100 Gy gamma-rays. The transcriptional expression of $GPX1$ and $GPX2$ was induced by NAC and 100 Gy gamma-rays. The gene expression of both GSH peroxidases was decreased with increasing concentrations of NAC in irradiated yeast cells. These results suggest that elevation of intracellular GSH by NAC and oxidative stress and ROS generated from gamma-rays induces expression of GSH peroxidase genes, and that NAC can protect the yeast cells against ROS generated from gamma-rays through direct scavenging of ROS and transcriptional activation of GSH peroxidase.

Interactome Analysis of Yeast Glutathione Peroxidase 3

  • Lee, Phil-Young;Bae, Kwang-Hee;Kho, Chang-Won;Kang, Sung-Hyun;Lee, Do-Hee;Cho, Sa-Yeon;Kang, Seong-Man;Lee, Sang-Chul;Park, Byoung-Chul;Park, Sung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1364-1367
    • /
    • 2008
  • Oxidative stress damages all cellular constituents, and therefore, cell has to possess various defense mechanisms to cope. Saccharomyces cerevisiae, widely used as a model organism for studying cellular responses to oxidative stress, contains three glutathione peroxidase (Gpx) proteins. Among them, Gpx3 plays a major defense role against oxidative stress in S. cerevisiae. In this study, in order to identity the new interaction proteins of Gpx3, we carried out two-dimensional gel electrophoresis after immunoprecipitation (IP-2DE), and MALDI-TOF mass spectrometry. The results showed that several proteins including protein disulfide isomerase, glutaredoxin 2, and SSY protein 3 specifically interact with Gpx3. These findings led us to suggest the possibility that Gpx3, known as a redox sensor and ROS scavenger, has another functional role by interacting with several proteins with various cellular functions.