• Title/Summary/Keyword: GPX

Search Result 454, Processing Time 0.026 seconds

Effect of Oxidative Stress and Glutamate Receptor Antagonist on Cultured Rat Osteoblast and Osteoclast (백서의 배양 골아세포와 파골세포에 대한 산화적 손상과 Glutamate 수용체 길항제의 영향)

  • Park Seung Taeck;Jeon Seung Ho;Lee Byung Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.996-1001
    • /
    • 2003
  • It is well known that oxidative stress of reactive oxygen species(ROS) may be a causative factor in the pathogenesis of bone disorder. The purpose of this study was to evaluate the cytotoxicity of oxidative stress. Cell viability by MTS assay or INT assay, activity of glutathione peroxidase(GPx), lipid peroxidation(LPO) activity and cell viablity. And also protctive effect of glutamate receptors against ROS-induced osteotoxicity was examined by protein synthesis, alkaline phosphatase (ALP) activity and lactate dehydrogenase (LDH) activity in cultured rat osteoblasts and osteoclasts. XO/HX decreased cell viability and GPx activity, protein synthesis and ALP activity, but increased LPO activity and LDH activity. In the protective effect, N-methyl-D-aspartate (NMDA) receptor antagonists or AMPA/kainate receptor antagonists such as D-2-amino-5-phosphonovaleric acid (APV), 7-chlorokynurenic acid (CKA), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6,7-dinitroquinoxaline-2,3-dione (DNQX), NMDA receptor antagonists but AMPA/kainate receptor antagonists showed protective effect on xanthine oxidase (XO) and hypoxanthine (HX) in these cultures by the increse of protein synthesis, ALP activity.

Alteration of mitochondrial DNA content modulates antioxidant enzyme expressions and oxidative stress in myoblasts

  • Min, Kyung-Ho;Lee, Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.519-528
    • /
    • 2019
  • Mitochondrial dysfunction is closely associated with reactive oxygen species (ROS) generation and oxidative stress in cells. On the other hand, modulation of the cellular antioxidant defense system by changes in the mitochondrial DNA (mtDNA) content is largely unknown. To determine the relationship between the cellular mtDNA content and defense system against oxidative stress, this study examined a set of myoblasts containing a depleted or reverted mtDNA content. A change in the cellular mtDNA content modulated the expression of antioxidant enzymes in myoblasts. In particular, the expression and activity of glutathione peroxidase (GPx) and catalase were inversely correlated with the mtDNA content in myoblasts. The depletion of mtDNA decreased both the reduced glutathione (GSH) and oxidized glutathione (GSSG) slightly, whereas the cellular redox status, as assessed by the GSH/GSSG ratio, was similar to that of the control. Interestingly, the steady-state level of the intracellular ROS, which depends on the reciprocal actions between ROS generation and detoxification, was reduced significantly and the lethality induced by $H_2O_2$ was alleviated by mtDNA depletion in myoblasts. Therefore, these results suggest that the ROS homeostasis and antioxidant enzymes are modulated by the cellular mtDNA content and that the increased expression and activity of GPx and catalase through the depletion of mtDNA are closely associated with an alleviation of the oxidative stress in myoblasts.

Effect of Astaxanthin on Anti-Inflammatory and Anti-Oxidative Effects of Astaxanthin Treatment for Atopic Dermatitis-induced Mice

  • Park, Jin Woo;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.38 no.4
    • /
    • pp.293-299
    • /
    • 2021
  • Background: This study sought to determine whether the antioxidant effects of astaxanthin (AST) could have an anti-inflammatory effect to reduce inflammation caused by atopic dermatitis (AD). Methods: Using a mouse model of AD induced by phtalic acid (PA), the levels of inflammation, inflammatory agents, and evidence of antioxidant activity were examined in PA treated mice (n = 3), PA-AST treated mice (n = 3), and a control group of mice (n = 3). This included measurements of ear thickness, levels of mast cells, IgE, inflammatory cytokine, malondialdehyde (MDA), hydrogen peroxide, HO-1, and GPx-1. Results: AST treatment significantly prevented inflammation as measured by ear thickness (p < 0.05), mast cell count (p < 0.001), and IgE concentration in the blood (p < 0.001). Levels of TNF-α (p < 0.001), IL-1β (p < 0.001), IL-6 (p < 0.001), and MDA (p < 0.05) were also significantly lower. In addition, GSH levels increased significantly (p < 0.001), and the level of hydrogen peroxide significantly reduced (p < 0.01). The expression of HO-1, GPx-1 increased. Conclusion: In this small experimental study, AST acted on inflammatory mechanisms that induced AD, through anti-inflammatory and antioxidant mechanisms, and is a candidate of interest in the clinical treatment of AD.

Expression of the Antioxidant Enzyme and Apoptosis Genes in in vitro Maturation lin vitro Fertilization of Porcine Embryos

  • H. Y. Jang;H. S. Kong;Park, K. D.;G. J. Jeon;Lee, H. K.;B. K. Yang
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.47-47
    • /
    • 2003
  • The present study was conducted to determine the expression of the antioxidant enzyme(CuZn-SOD, Mn-SOD and GPX and apoptosis gene(caspase-3) for in vitro culture in in vitro maturation and in vitro fertilization(IVM/IVF) embryos in porcine. Porcine embryos derived from IVM/IVF were cultured in NCSU23 medium under 5% $CO_2$ in air at 38.5$^{\circ}C$. The patterns of gene expression for several antioxidant enzyme and apoptosis genes during preimplantion porcine embryo development were examined by the modified semi-quantitative single cell reverse transcriptase- polymerase chain reaction (RT-PCR). Preimplantation porcine embryos produced by IVM/IVF have expressed mRNAs for CuZn-SOD and GPX, whereas transcripts for Mn-SOD have not detected at any developmental stages. Expression of caspase-3 mRNA was detected at 2 cell, 8 cell, 16 cell and morula stages. The fas ligand transcripts were detected in porcine blastocyst. These results suggest that various antioxidant enzymes and apoptosis genes play crucial roles in in vitro culture of porcine IVM/IVF embryos.

  • PDF

Therapeutic Efficacy of Methanol Extract of Bidens tripartita in HT22 Cells by Neuroprotective Effect

  • Yerim Son;Choong Je Ma
    • Natural Product Sciences
    • /
    • v.29 no.2
    • /
    • pp.67-73
    • /
    • 2023
  • Oxidative stress brings about apoptosis through various mechanisms. In particular, oxidative stress in neuronal cells can causes a variety of brain diseases. This study was conducted to investigate the effect of Bidens tripartita on oxidative stress in neuronal cells. B. tripartita has traditionally been used in Russia as a medicine for diseases such as rhinitis, angina and colitis. Over-production of glutamate induces oxidative stress. When the oxidative stress occurs in the cells, reactive oxygen species (ROS) and Ca2+ increase. In addition, the abrupt decline of mitochondrial membrane potential and the decrease of glutathione related enzymes such as glutathione reductase (GR) and glutathione peroxidase (GPx) are also observed. The samples used in the experiment showed cytoprotective effect in the MTT assay. It also lowered the ROS and Ca2+ level, and increased degree of mitochondrial membrane potential, GR and GPx. As a result, B. tripartita had a positive effect against oxidative stress. Thus, it is expected to have potential for treatment and prevention of degenerative brain diseases such as Alzheimer's disease.

Effects of D-ribose Supplementation on Run-to-exhaustion Time and Antioxidative Capacity under Sea Level or High Altitude Condition (D-라이보스 섭취가 해수면환경과 고지대환경에서의 운동지속능력 및 항산화능력에 미치는 영향)

  • Yoon, Jungwon;Lee, Shineon;Park, Hyon
    • Korean Journal of Exercise Nutrition
    • /
    • v.13 no.1
    • /
    • pp.45-50
    • /
    • 2009
  • This study evaluated the effects of D-ribose supplementation on exercise time in a hypoxic chamber. Eight healthy young males participated in experiments under all four different conditions; placebo+normoxic, placebo+hypoxic, ribose+normoxic, and ribose+hypoxic. Subjects took 1 g per 10 kg body weight of ribose dissolved in drinking water 30 minutes before and immediately before running. We observed the run-to-exhaustion time, the maximum heart rate, and the changing pattern of the heart rate during exercise. The longest running time was achieved when subjects ran under normoxic condition with ribose supplementation. The shortest running time occurred when subjects ran under hypoxic conditions without ribose supplementation. We measured MDA and GPx to determine any changes in oxidative stresses or antioxidative systems. MDA was affected by the environmental conditions and the running time. The activity of GPx showed a significant difference only with the different environmental conditions of exercise. The results of this study indicate that ribose can be considered a possible ergogenic during exercise in specific conditions, but more detailed and well-controlled studies are needed to make a definitive conclusion.

Antioxidant Effects of Eriodictyol on Hydrogen Peroxide-Induced Oxidative Stress in HepG2 Cells (산화스트레스가 유도된 HepG2 세포에서 Eriodictyol의 항산화 효과)

  • Joo, Tae-Woo;Hong, Sung-Hyun;Park, Sun-Young;Kim, Gur-Yoo;Jhoo, Jin-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.510-517
    • /
    • 2016
  • This study was conducted to investigate the antioxidant and hepatoprotective effects of eriodictyol compound against hydrogen peroxide-induced oxidative stress in HepG2 cells by measuring expression levels of antioxidant enzymes, liver function index enzyme activities, and inhibitory effects against reactive oxygen species (ROS) production. HepG2 cell viability was assessed using 3-(4,5-dimethyl thiazole-2-yl)-2,5-diphenyl tetrazolium bromide assay. In the concentration range of $10{\sim}50{\mu}g/mL$, eriodictyol displayed over 98% cell viability in HepG2 cells. The effects of increased gene expression on hydrogen peroxide-induced oxidative stress were analyzed by monitoring antioxidant enzyme (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPx) gene expression levels using real-time PCR. Eriodictyol compound significantly increased gene expression levels of SOD, CAT, and GPx in a dose-dependent manner ($10{\sim}50{\mu}g/mL$). Hepatoprotective effects against hydrogen peroxide-induced oxidative stress were analyzed by monitoring glutamic oxaloacetic transaminase (GOT), lactate dehydrogenase (LDH), and gamma-glutamyl transferase (GGT) activities in HepG2 cell culture medium using a biochemistry analyzer. Eriodictyol compound significantly reduced GOT, LDH, and GGT activities in a dose-dependent manner in HepG2 cells. ROS level in HepG2 cells was analyzed by 2',7'-dichlorofluorescein fluorescence diacetate assay, and eriodictyol compound effectively reduced the intracellular ROS level in HepG2 cells. The results reveal that eriodictyol compound can be useful for development of effective antioxidant and hepatoprotective agents.

Effect of Dietary Selenium on the Colon Carcinogenesis in Male ICR Mice

  • Cho, Min-Haeng;Kim, Jun-Hyeong;Hue, Jin-Joo;Kang, Bong-Su;Park, Hyun-Ji;Nam, Sang-Yoon;Yun, Young-Won;Kim, Jong-Soo;Jeong, Jae-Hwang;Lee, Beom-Jun
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.3
    • /
    • pp.269-277
    • /
    • 2010
  • Selenium is an essential micronutrient for normal body function and functions as an essential constituent of selenoproteins. This study was carried out to investigate effect of selenium on the formation of colonic aberrant crypt foci (ACF) and tumor formation in a mouse model. Five-week old ICR mice were acclimated for one week and fed different selenium diet (0.02, 0.1, and 0.5 ppm) for 12 weeks. Animals received three intraperitoneal injections of azoxymethane (10 mg/kg B.W. in saline for 3 weeks), followed by 2% dextran sodium sulfate in the drinking water for a week. There were four experimental groups, including a normal control group and three different selenium levels groups. After sacrifice, the total numbers of aberrant crypt (AC) and ACF were measured in the colonic mucosa after methylene blue staining. The number of tumors was noted for tumor incidence. Liver selenium concentration was measured using ICP-AES method. Gutathione peroxidase (GPx) activity was determined using a GPx assay kit in the liver and colon. TUNEL assay and proliferating cell nuclear antigen (PCNA) staining were performed to examine the cell apoptosis and cell proliferation, respectively. Immunohistochemistry of $\beta$-catenin was also performed on the mucous membrane tissue of colon. The activity of GPx in the liver and colon was decreased in the selenium-deficient diet group while it was increased in the selenium-overloaded diet group. Apoptotic positive cells were increased in the selenium-overloaded diet group but decreased in the selenium-deficient diet group. PCNA staining area was decreased in the selenium-overloaded diet group. In addition, the $\beta$-catenin protein level in the selenium-deficient diet group was increased but decreased in the selenium-overloaded diet group. These results indicate that dietary selenium might exert a modulating effect on colon cancer by inhibiting the development of ACF and colon tumor formation in this mouse model.

Mechanism and Effect of Corydalis ternata on the $CCl_4$-Induced$ Hepatotoxicity (사염화탄소에 의한 간손상에 미치는 현호색의 효과 및 그 기전)

  • 서인옥;정춘식;정기화
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.3
    • /
    • pp.226-234
    • /
    • 2000
  • Protective effect of Corydalis ternata against the carbon tetrachloride-induced toxicity was investigated. Carbon tetrachloride($CCl_4$) induces hepatotoxicity due to the reactive free radical(CCl$_3$ . ) generated by cytochrome P-450 enzyme. We examined effects of hexane, chloroform, butanol and water fractions prepared from the Corydalis ternata methanol extract. Rats were treated with those for 3 days, and liver microsomes and cytosols were prepared at 24 hour after last treatment. Hepatoprotective activity of the water fraction was higher than that of other fractions. To examine mechanism of the hepatoprotective effect of Corydalis ternuta, we measured contents of malondialdehyde(MDA), cytochrome P46O(CYP), glutathione, calcium as well as the activities of NADPH-CYP reductase, glutathione S-transferase(GST), superoxide dismutase(SOD), glutathione peroxidase(GPX) and catalase. The fraction inhibited production of MDA, content of CYP and calcium in liver of water fractions - treated rats as compared with those of CCl4-treated rats. The GST activity was increased. We speculate that the O2 radical scavenging activities of the water fraction might play a key role in the mechanism opposing the progression of $CCl_4$-induced hepatotoxicity, but the activities of SOD, GPX, CAT were decreased. These results suggest that the mechanism might be mainly due to the decrease of CYP contents, act as calcium channel blocker and increase of GST activity rather than $O_2$ radical scavenging activities.

  • PDF

Prophylactic effect of aqueous extract of Sesamum indicum seeds on ethanol-induced toxicity in male rats

  • Oyinloye, B.E.;Nwozo, S.O.;Amah, G.H.;Awoyinka, A.O.;Ojo, O.A.;Ajiboye, B.O.;Tijani, H.A.
    • Nutrition Research and Practice
    • /
    • v.8 no.1
    • /
    • pp.54-58
    • /
    • 2014
  • The liver is vulnerable to alcohol-related injury because it is the primary site of alcohol metabolism. Additionally, a number of potentially dangerous by-products are generated as alcohol is broken down in the liver. However, dietary supplements may prevent or relieve some of alcohol's deleterious effects. Therefore, this study was conducted to evaluate the prophylactic effect of aqueous extract of Sesamum indicum (SI) on ethanol induced toxicity in rats. Male Wistar albino rats were divided into control, ethanol, pre-treatment, simultaneous and post-treatment groups. In the prophylactic experiment, Sesamum indicum, (200 mg/kg body weight) was administered by oral gavage for 28 days; two hours before, simultaneously with or two hours after ethanol exposure. Toxicity was induced by administering 45% ethanol (4.8 g/kg bw) by oral gavage. Lipid peroxidation (TBARS) and reduced glutathione (GSH) levels and catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) and gluthathione-S-transferase (GST) activities were then determined in the liver, serum triglyceride (TG) levels, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were monitored and histological examination was carried out. The results revealed that ethanol administration led to significant elevation of TBARS level while depleting in the level of GSH as well as CAT, GPx, SOD and GST activities. Similarly, TG level and ALT and AST activities were elevated. The SI pre-treated group significantly inhibited TBARS, restored GSH level, enhanced CAT, GPx, SOD and GST activities and significantly decreased the elevated level of serum TG, ALT and AST activities. SI treatment (simultaneously with ethanol) exhibited similar effects to those of the SI pre-treated groups, while the SI post-treated group did not show the same protection as the Pre-treated group. S. indicum possesses antioxidant and hepatoprotective properties, that eliminate the deleterious effects of toxic metabolites of ethanol.