• 제목/요약/키워드: GPU process

검색결과 148건 처리시간 0.038초

GPU 성능 저하 해결을 위한 내부 자원 활용/비활용 상태 분석 (Analysis on the Active/Inactive Status of Computational Resources for Improving the Performance of the GPU)

  • 최홍준;손동오;김종면;김철홍
    • 한국콘텐츠학회논문지
    • /
    • 제15권7호
    • /
    • pp.1-11
    • /
    • 2015
  • 최신 고성능 컴퓨팅 시스템에서는, 대용량 병렬 연산을 효과적으로 처리할 수 있는 GPU의 우수한 연산 성능을 그래픽 처리 이외의 범용 작업에 활용하는 GPGPU 기술에 관한 연구가 활발하게 진행 중이다. 하지만 범용 응용프로그램의 특성이 GPU 구조에 최적화되어 있지 않기 때문에 범용 프로그램 수행 시 GPGPU는 GPU의 연산 자원을 효과적으로 활용하지 못하고 있다. 그러므로 본 논문에서는 GPGPU 기술을 사용하는 컴퓨팅 시스템의 성능을 보다 향상시킬 수 있는 GPU 연구에 대한 방향을 제시하고자 한다. 이를 위하여, 본 논문에서는 GPU 성능 저하 원인 분석을 수행한다. GPU 성능 저하 원인을 보다 명확하게 분류하고자 본 논문에서는 GPU 코어의 상태를 완전 활성화 상태, 불완전 활성화 상태, 유휴 상태, 메모리스톨 상태, 그리고 GPU 코어 스톨 상태 등 5가지로 정의하였다. 완전 활성화 상태를 제외한 모든 GPU 코어 상태들은 컴퓨팅 시스템의 성능 저하를 유발한다. 본 논문에서 성능 저하 원인을 찾고자 벤치마크 프로그램의 특성에 따라 각 GPU 코어 상태의 비율 변화를 측정하였다. 분석 결과에 따르면, 불완전 활성화 상태, 유휴 상태, 메모리 스톨 상태 그리고 GPU 코어 스톨 상태는 연산 자원 활용률 저하, 낮은 프로그램 병렬성, 높은 메모리 요청, 그리고 구조적 해저드에 의해 각각 유발된다.

Efficient Parallel Block-layered Nonbinary Quasi-cyclic Low-density Parity-check Decoding on a GPU

  • Thi, Huyen Pham;Lee, Hanho
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권3호
    • /
    • pp.210-219
    • /
    • 2017
  • This paper proposes a modified min-max algorithm (MMMA) for nonbinary quasi-cyclic low-density parity-check (NB-QC-LDPC) codes and an efficient parallel block-layered decoder architecture corresponding to the algorithm on a graphics processing unit (GPU) platform. The algorithm removes multiplications over the Galois field (GF) in the merger step to reduce decoding latency without any performance loss. The decoding implementation on a GPU for NB-QC-LDPC codes achieves improvements in both flexibility and scalability. To perform the decoding on the GPU, data and memory structures suitable for parallel computing are designed. The implementation results for NB-QC-LDPC codes over GF(32) and GF(64) demonstrate that the parallel block-layered decoding on a GPU accelerates the decoding process to provide a faster decoding runtime, and obtains a higher coding gain under a low $10^{-10}$ bit error rate and low $10^{-7}$ frame error rate, compared to existing methods.

2차원 구조 대비 3차원 구조 GPU의 메모리 접근 효율성 분석 (Memory Delay Comparison between 2D GPU and 3D GPU)

  • 전형규;안진우;김종면;김철홍
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권7호
    • /
    • pp.1-11
    • /
    • 2012
  • 최근 반도체 공정 기술이 발달함에 따라 단일 프로세서에 적재되는 코어의 수가 크게 증가하였고, 이는 프로세서의 성능을 급격하게 향상시키는 계기가 되고 있다. 특히, 많은 수의 코어들로 구성된 GPU(Graphics Processing Unit)는 대규모 병렬성을 활용하여 연산처리 성능을 크게 향상시키고 있다. 하지만, 주 메모리 접근 지연시간이 GPU의 성능 향상을 제약하는 심각한 요인 중 하나로 제기되는 상황이다. 본 논문에서는 3차원 구조를 통한 GPU의 메모리 접근 효율성 향상에 대한 정량적 분석과 3차원 구조 적용 시 발생 가능한 문제점에 대하여 살펴보고자 한다. 일반적으로 메모리 명령어 비율은 평균적으로 전체 명령어의 30%를 차지하고, 메모리 명령어 중에서 주 메모리 접근과 관련된 글로벌/로컬 메모리 명령어가 차지하는 비율 또한 평균 60%이므로 주 메모리로의 접근 지연시간을 크게 감소시키는 3차원 구조를 적용한다면 GPU의 성능 또한 크게 향상시킬 수 있을 것으로 예상된다. 그러나 본 논문에서 수행한 실험 결과에 따르면 메모리 병목현상으로 인해 3차원 구조 GPU의 성능이 2차원 구조 GPU에 비해 크게 향상되지는 않음을 확인할 수 있다. 분석 결과에 의하면, 3차원 구조 GPU는 2차원 구조 GPU와 비교하여 메모리 병목현상으로 인한 성능 지연이 최대 245%까지 증가하기 때문이다. 본 논문에서는 3차원 구조 GPU를 대상으로 메모리 접근의 효율성과 문제점을 함께 분석함으로써, 3차원 GPU에 적합한 메모리 구조를 설계하기 위한 가이드라인을 제시하고자 한다.

실시간 초음파 영상에서 노이즈 개선을 위한 GPU 기반의 필터 알고리즘 (A GPU-based Filter Algorithm for Noise Improvement in Realtime Ultrasound Images)

  • 조영복;우성희
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권6호
    • /
    • pp.1207-1212
    • /
    • 2018
  • 초음파 영상은 초음파 펄스를 이용해 반사파를 수신하여 진단에 필요한 영상을 구성하는데 신호가 약해 질 경우, 잡음이 발생하여 미세한 명암도 차이가 발생한다. 또한 초음파 영상의 특성인 호흡에 의한 흔들림 현상과 실시간으로 변화하는 움직임에서 영상의 밝기 변화가 발생한다. 이와 같은 노이즈로 인해 임상적 병변을 육안으로 판단하고 진단하는데 어려움이 있다. 본 논문에서는 초음파 획득한 이미지에 영상처리 기법을 이용하여 형태학적 특징을 자동 추출한다. 이 논문에서는 영상처리를 위해 클라우드 빅데이터 처리 플랫폼을 활용해 GPU기반의 빠른 필터를 구현하였다. GPU 기반의 고성능 필터의 적용시 CPU 기반보다 4.7배 빠른 성능으로 알고리즘이 동작되었고 PSNR이 37.2dB로 원본과 매우 유사함을 확인하였다.

GPU 기반 반투과 매체 렌더링의 향상 기법 (Enhancement Techniques for GPU-Based Rendering of Participating Media)

  • 차득현;이용일;임인성
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권12호
    • /
    • pp.1165-1176
    • /
    • 2010
  • 구름, 연기, 가스 등과 같은 반투과 매체 (participating media)를 사실적으로 가시화해주기 위해서는 그 내부에서 빛이 진행하는 과정을 물리적으로 시뮬레이션 해주어야 한다. 이 과정은 볼륨 렌더링 방정식이라는 적분 방정식을 통하여 표현할 수 있으나, 이를 정밀하게 푸는 것은 상당한 계산 시간을 요한다. 최근 GPU의 성능 향상에 힘입어, 반투과 매체에 대한 고속의 렌더링 기법들이 소개되고 있으나, 아직도 해결해야할 문제들이 많이 남아있다. 본 논문에서는 기존의 GPU 기반의 반투과 매체 렌더러의 기능/성능 향상을 위하여 적용한 렌더링 기법들을 설명하고, 그러한 노력들이 어떠한 개선 효과를 달성하였는지 분석한다. 이러한 기법들은 추후 각종 디지털콘텐츠 제작에 있어 특수 효과 생성을 위한 고속의 사실적인 볼륨 렌더러 구축에 유용하게 적용될 수 있을 것이다.

고차 정확도 수치기법의 GPU 계산을 통한 효율적인 압축성 유동 해석 (EFFICIENT COMPUTATION OF COMPRESSIBLE FLOW BY HIGHER-ORDER METHOD ACCELERATED USING GPU)

  • 장태규;박진석;김종암
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.52-61
    • /
    • 2014
  • The present paper deals with the efficient computation of higher-order CFD methods for compressible flow using graphics processing units (GPU). The higher-order CFD methods, such as discontinuous Galerkin (DG) methods and correction procedure via reconstruction (CPR) methods, can realize arbitrary higher-order accuracy with compact stencil on unstructured mesh. However, they require much more computational costs compared to the widely used finite volume methods (FVM). Graphics processing unit, consisting of hundreds or thousands small cores, is apt to massive parallel computations of compressible flow based on the higher-order CFD methods and can reduce computational time greatly. Higher-order multi-dimensional limiting process (MLP) is applied for the robust control of numerical oscillations around shock discontinuity and implemented efficiently on GPU. The program is written and optimized in CUDA library offered from NVIDIA. The whole algorithms are implemented to guarantee accurate and efficient computations for parallel programming on shared-memory model of GPU. The extensive numerical experiments validates that the GPU successfully accelerates computing compressible flow using higher-order method.

Performance Study of Satellite Image Processing on Graphics Processors Unit Using CUDA

  • Jeong, In-Kyu;Hong, Min-Gee;Hahn, Kwang-Soo;Choi, Joonsoo;Kim, Choen
    • 대한원격탐사학회지
    • /
    • 제28권6호
    • /
    • pp.683-691
    • /
    • 2012
  • High resolution satellite images are now widely used for a variety of mapping applications including photogrammetry, GIS data acquisition and visualization. As the spectral and spatial data size of satellite images increases, a greater processing power is needed to process the images. The solution of these problems is parallel systems. Parallel processing techniques have been developed for improving the performance of image processing along with the development of the computational power. However, conventional CPU-based parallel computing is often not good enough for the demand for computational speed to process the images. The GPU is a good candidate to achieve this goal. Recently GPUs are used in the field of highly complex processing including many loop operations such as mathematical transforms, ray tracing. In this study we proposed a technique for parallel processing of high resolution satellite images using GPU. We implemented a spectral radiometric processing algorithm on Landsat-7 ETM+ imagery using CUDA, a parallel computing architecture developed by NVIDIA for GPU. Also performance of the algorithm on GPU and CPU is compared.

CUDA와 OPenMP를 이용한 빠르고 효율적인 신경망 구현 (Fast and Efficient Implementation of Neural Networks using CUDA and OpenMP)

  • 박안진;장홍훈;정기철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권4호
    • /
    • pp.253-260
    • /
    • 2009
  • 컴퓨터 비전이나 패턴 인식 분야에서 이용되고 있는 많은 알고리즘들이 최근 빠른 수행시간을 위해 GPU에서 구현되고 있지만, GPU를 이용하여 알고리즘을 구현할 경우 크게 두 가지 문제점을 고려해야 한다. 첫째, 컴퓨터 그래픽스 분야의 지식이 필요한 쉐이딩(shading) 언어를 알아야 한다. 둘째, GPU를 효율적으로 활용하기 위해 CPU와 GPU간의 데이터 교환을 최소화해야 한다. 이를 위해 CPU는 GPU에서 처리할 수 있는 최대 용량의 데이터를 생성하여 GPU에 전송해야 하기 때문에 CPU에서 많은 처리시간을 소모하며, 이로 인해 CPU와 GPU 사이에 많은 오버헤드가 발생한다. 본 논문에서는 그래픽 하드웨어와 멀티코어(multi-core) CPU를 이용한 빠르고 효율적인 신경망 구현 방법을 제안한다. 기존 GPU의 첫 번째 문제점을 해결하기 위해 제안된 방법은 복잡한 쉐이팅 언어 대신 그래픽스적인 기본지식 없이도 GPU를 이용하여 응용프로그램 개발이 가능한 CUDA를 이용하였다. 두 번째 문제점을 해결하기 위해 멀티코어 CPU에서 공유 메모리 환경의 병렬화를 수행할 수 있는 OpenMP를 이용하였으며, 이의 처리시간을 줄여 CPU와 GPU 환경에서 오버 헤드를 최소화할 수 있다. 실험에서 제안된 CUDA와 OpenMP기반의 구현 방법을 신경망을 이용한 문자영역 검출 알고리즘에 적용하였으며, CPU에서의 수행시간과 비교하여 약 15배, GPU만을 이용한 수행시간과 비교하여 약 4배정도 빠른 수행시간을 보였다.

액체 시뮬레이션의 얇은 특징을 빠르게 표현하기 위한 CPU와 GPU 이기종 컴퓨팅 기술 (A CPU and GPU Heterogeneous Computing Techniques for Fast Representation of Thin Features in Liquid Simulations)

  • 김종현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제24권2호
    • /
    • pp.11-20
    • /
    • 2018
  • 우리는 유체의 얇은 막을 명시적으로 표현하고 보존할 수 있는 CPU-GPU 이기종 컴퓨팅 기반의 유체 시뮬레이션 기법을 소개한다. 본 논문에서 가장 큰 기여는 얇은 유체표면에서 쪼개지거나 밀도가 높은 지점에서 붕괴되어 유체표면에 나타나는 Hole을 방지하는 입자 기반 프레임워크를 GPU를 활용한다는 것이다. 유체표면을 추적하는 기존의 방법과는 달리, 제안된 프레임워크는 CPU-GPU 프레임워크상에서 수치적 확산이나 꼬임문제 없이 안정적으로 토폴로지 변화를 처리할 수 있다. 얇은 표면의 특징은 이방성 커널(Anisotropic kernel)과 주성분 분석(Principal component analysis; PCA)을 GPU상에서 수행하여 유체의 방향성을 빠르게 찾고, 새로운 유체입자의 위치를 결정하기 위해 계산하는, 후보위치 추출 과정의 효율성을 CPU-GPU 이기종 컴퓨팅 기술 기반으로 빠르게 계산한다. 제안된 알고리즘은 직관적으로 구현되며, 병렬화가 쉽고 시각적으로 디테일한 액체의 얇은 표면을 빠르게 애니메이션 할 수 있다.

제한된 메모리를 가진 GPU를 이용한 효율적인 그래프 알고리즘 처리 기법 (An Efficient Graph Algorithm Processing Scheme using GPUs with Limited Memory)

  • 송상호;이현병;최도진;임종태;복경수;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제22권8호
    • /
    • pp.81-93
    • /
    • 2022
  • 최근 대용량 그래프의 반복 처리를 위하여 GPU를 이용하는 연구가 진행되고 있다. 메모리가 제한된 GPU를 이용하여 대용량 그래프를 처리하기 위해서는 그래프를 서브 그래프로 분할한 후 서브 그래프들을 스케줄링해서 처리해야 한다. 그러나 활성 정점에 따라 서브 그래프가 처리되기 때문에 그래프 처리 과정 속에서 불필요한 데이터 전송이 반복된다. 본 논문에서는 메모리가 제한된 GPU 환경에서 효율적인 그래프 알고리즘 처리 기법을 제안하고 성능 평가를 수행한다. 제안하는 기법은 그래프 차등 서브 그래프 스케줄링 방법과 그래프 분할 방법으로 구성된다. 대용량 그래프 분할 방법은 GPU에서 효율적으로 처리할 수 있도록 대용량 그래프를 서브 그래프로 분할할 수 있는 방법을 결정한다. 차등 서브그래프 스케줄링 방법은 GPU에서 처리하는 서브그래프를 스케줄링하여 반복적으로 사용되는 HOST-GPU 간의 데이터 중복 전송을 줄인다. 다양한 그래프 처리 알고리즘들의 성능 평가를 수행함으로써 제안하는 기법은 기존 분할 기법 대비 170%, 기존 처리 기법 대비 268% 향상되었다.