최신 고성능 컴퓨팅 시스템에서는, 대용량 병렬 연산을 효과적으로 처리할 수 있는 GPU의 우수한 연산 성능을 그래픽 처리 이외의 범용 작업에 활용하는 GPGPU 기술에 관한 연구가 활발하게 진행 중이다. 하지만 범용 응용프로그램의 특성이 GPU 구조에 최적화되어 있지 않기 때문에 범용 프로그램 수행 시 GPGPU는 GPU의 연산 자원을 효과적으로 활용하지 못하고 있다. 그러므로 본 논문에서는 GPGPU 기술을 사용하는 컴퓨팅 시스템의 성능을 보다 향상시킬 수 있는 GPU 연구에 대한 방향을 제시하고자 한다. 이를 위하여, 본 논문에서는 GPU 성능 저하 원인 분석을 수행한다. GPU 성능 저하 원인을 보다 명확하게 분류하고자 본 논문에서는 GPU 코어의 상태를 완전 활성화 상태, 불완전 활성화 상태, 유휴 상태, 메모리스톨 상태, 그리고 GPU 코어 스톨 상태 등 5가지로 정의하였다. 완전 활성화 상태를 제외한 모든 GPU 코어 상태들은 컴퓨팅 시스템의 성능 저하를 유발한다. 본 논문에서 성능 저하 원인을 찾고자 벤치마크 프로그램의 특성에 따라 각 GPU 코어 상태의 비율 변화를 측정하였다. 분석 결과에 따르면, 불완전 활성화 상태, 유휴 상태, 메모리 스톨 상태 그리고 GPU 코어 스톨 상태는 연산 자원 활용률 저하, 낮은 프로그램 병렬성, 높은 메모리 요청, 그리고 구조적 해저드에 의해 각각 유발된다.
IEIE Transactions on Smart Processing and Computing
/
제6권3호
/
pp.210-219
/
2017
This paper proposes a modified min-max algorithm (MMMA) for nonbinary quasi-cyclic low-density parity-check (NB-QC-LDPC) codes and an efficient parallel block-layered decoder architecture corresponding to the algorithm on a graphics processing unit (GPU) platform. The algorithm removes multiplications over the Galois field (GF) in the merger step to reduce decoding latency without any performance loss. The decoding implementation on a GPU for NB-QC-LDPC codes achieves improvements in both flexibility and scalability. To perform the decoding on the GPU, data and memory structures suitable for parallel computing are designed. The implementation results for NB-QC-LDPC codes over GF(32) and GF(64) demonstrate that the parallel block-layered decoding on a GPU accelerates the decoding process to provide a faster decoding runtime, and obtains a higher coding gain under a low $10^{-10}$ bit error rate and low $10^{-7}$ frame error rate, compared to existing methods.
최근 반도체 공정 기술이 발달함에 따라 단일 프로세서에 적재되는 코어의 수가 크게 증가하였고, 이는 프로세서의 성능을 급격하게 향상시키는 계기가 되고 있다. 특히, 많은 수의 코어들로 구성된 GPU(Graphics Processing Unit)는 대규모 병렬성을 활용하여 연산처리 성능을 크게 향상시키고 있다. 하지만, 주 메모리 접근 지연시간이 GPU의 성능 향상을 제약하는 심각한 요인 중 하나로 제기되는 상황이다. 본 논문에서는 3차원 구조를 통한 GPU의 메모리 접근 효율성 향상에 대한 정량적 분석과 3차원 구조 적용 시 발생 가능한 문제점에 대하여 살펴보고자 한다. 일반적으로 메모리 명령어 비율은 평균적으로 전체 명령어의 30%를 차지하고, 메모리 명령어 중에서 주 메모리 접근과 관련된 글로벌/로컬 메모리 명령어가 차지하는 비율 또한 평균 60%이므로 주 메모리로의 접근 지연시간을 크게 감소시키는 3차원 구조를 적용한다면 GPU의 성능 또한 크게 향상시킬 수 있을 것으로 예상된다. 그러나 본 논문에서 수행한 실험 결과에 따르면 메모리 병목현상으로 인해 3차원 구조 GPU의 성능이 2차원 구조 GPU에 비해 크게 향상되지는 않음을 확인할 수 있다. 분석 결과에 의하면, 3차원 구조 GPU는 2차원 구조 GPU와 비교하여 메모리 병목현상으로 인한 성능 지연이 최대 245%까지 증가하기 때문이다. 본 논문에서는 3차원 구조 GPU를 대상으로 메모리 접근의 효율성과 문제점을 함께 분석함으로써, 3차원 GPU에 적합한 메모리 구조를 설계하기 위한 가이드라인을 제시하고자 한다.
초음파 영상은 초음파 펄스를 이용해 반사파를 수신하여 진단에 필요한 영상을 구성하는데 신호가 약해 질 경우, 잡음이 발생하여 미세한 명암도 차이가 발생한다. 또한 초음파 영상의 특성인 호흡에 의한 흔들림 현상과 실시간으로 변화하는 움직임에서 영상의 밝기 변화가 발생한다. 이와 같은 노이즈로 인해 임상적 병변을 육안으로 판단하고 진단하는데 어려움이 있다. 본 논문에서는 초음파 획득한 이미지에 영상처리 기법을 이용하여 형태학적 특징을 자동 추출한다. 이 논문에서는 영상처리를 위해 클라우드 빅데이터 처리 플랫폼을 활용해 GPU기반의 빠른 필터를 구현하였다. GPU 기반의 고성능 필터의 적용시 CPU 기반보다 4.7배 빠른 성능으로 알고리즘이 동작되었고 PSNR이 37.2dB로 원본과 매우 유사함을 확인하였다.
구름, 연기, 가스 등과 같은 반투과 매체 (participating media)를 사실적으로 가시화해주기 위해서는 그 내부에서 빛이 진행하는 과정을 물리적으로 시뮬레이션 해주어야 한다. 이 과정은 볼륨 렌더링 방정식이라는 적분 방정식을 통하여 표현할 수 있으나, 이를 정밀하게 푸는 것은 상당한 계산 시간을 요한다. 최근 GPU의 성능 향상에 힘입어, 반투과 매체에 대한 고속의 렌더링 기법들이 소개되고 있으나, 아직도 해결해야할 문제들이 많이 남아있다. 본 논문에서는 기존의 GPU 기반의 반투과 매체 렌더러의 기능/성능 향상을 위하여 적용한 렌더링 기법들을 설명하고, 그러한 노력들이 어떠한 개선 효과를 달성하였는지 분석한다. 이러한 기법들은 추후 각종 디지털콘텐츠 제작에 있어 특수 효과 생성을 위한 고속의 사실적인 볼륨 렌더러 구축에 유용하게 적용될 수 있을 것이다.
The present paper deals with the efficient computation of higher-order CFD methods for compressible flow using graphics processing units (GPU). The higher-order CFD methods, such as discontinuous Galerkin (DG) methods and correction procedure via reconstruction (CPR) methods, can realize arbitrary higher-order accuracy with compact stencil on unstructured mesh. However, they require much more computational costs compared to the widely used finite volume methods (FVM). Graphics processing unit, consisting of hundreds or thousands small cores, is apt to massive parallel computations of compressible flow based on the higher-order CFD methods and can reduce computational time greatly. Higher-order multi-dimensional limiting process (MLP) is applied for the robust control of numerical oscillations around shock discontinuity and implemented efficiently on GPU. The program is written and optimized in CUDA library offered from NVIDIA. The whole algorithms are implemented to guarantee accurate and efficient computations for parallel programming on shared-memory model of GPU. The extensive numerical experiments validates that the GPU successfully accelerates computing compressible flow using higher-order method.
High resolution satellite images are now widely used for a variety of mapping applications including photogrammetry, GIS data acquisition and visualization. As the spectral and spatial data size of satellite images increases, a greater processing power is needed to process the images. The solution of these problems is parallel systems. Parallel processing techniques have been developed for improving the performance of image processing along with the development of the computational power. However, conventional CPU-based parallel computing is often not good enough for the demand for computational speed to process the images. The GPU is a good candidate to achieve this goal. Recently GPUs are used in the field of highly complex processing including many loop operations such as mathematical transforms, ray tracing. In this study we proposed a technique for parallel processing of high resolution satellite images using GPU. We implemented a spectral radiometric processing algorithm on Landsat-7 ETM+ imagery using CUDA, a parallel computing architecture developed by NVIDIA for GPU. Also performance of the algorithm on GPU and CPU is compared.
컴퓨터 비전이나 패턴 인식 분야에서 이용되고 있는 많은 알고리즘들이 최근 빠른 수행시간을 위해 GPU에서 구현되고 있지만, GPU를 이용하여 알고리즘을 구현할 경우 크게 두 가지 문제점을 고려해야 한다. 첫째, 컴퓨터 그래픽스 분야의 지식이 필요한 쉐이딩(shading) 언어를 알아야 한다. 둘째, GPU를 효율적으로 활용하기 위해 CPU와 GPU간의 데이터 교환을 최소화해야 한다. 이를 위해 CPU는 GPU에서 처리할 수 있는 최대 용량의 데이터를 생성하여 GPU에 전송해야 하기 때문에 CPU에서 많은 처리시간을 소모하며, 이로 인해 CPU와 GPU 사이에 많은 오버헤드가 발생한다. 본 논문에서는 그래픽 하드웨어와 멀티코어(multi-core) CPU를 이용한 빠르고 효율적인 신경망 구현 방법을 제안한다. 기존 GPU의 첫 번째 문제점을 해결하기 위해 제안된 방법은 복잡한 쉐이팅 언어 대신 그래픽스적인 기본지식 없이도 GPU를 이용하여 응용프로그램 개발이 가능한 CUDA를 이용하였다. 두 번째 문제점을 해결하기 위해 멀티코어 CPU에서 공유 메모리 환경의 병렬화를 수행할 수 있는 OpenMP를 이용하였으며, 이의 처리시간을 줄여 CPU와 GPU 환경에서 오버 헤드를 최소화할 수 있다. 실험에서 제안된 CUDA와 OpenMP기반의 구현 방법을 신경망을 이용한 문자영역 검출 알고리즘에 적용하였으며, CPU에서의 수행시간과 비교하여 약 15배, GPU만을 이용한 수행시간과 비교하여 약 4배정도 빠른 수행시간을 보였다.
우리는 유체의 얇은 막을 명시적으로 표현하고 보존할 수 있는 CPU-GPU 이기종 컴퓨팅 기반의 유체 시뮬레이션 기법을 소개한다. 본 논문에서 가장 큰 기여는 얇은 유체표면에서 쪼개지거나 밀도가 높은 지점에서 붕괴되어 유체표면에 나타나는 Hole을 방지하는 입자 기반 프레임워크를 GPU를 활용한다는 것이다. 유체표면을 추적하는 기존의 방법과는 달리, 제안된 프레임워크는 CPU-GPU 프레임워크상에서 수치적 확산이나 꼬임문제 없이 안정적으로 토폴로지 변화를 처리할 수 있다. 얇은 표면의 특징은 이방성 커널(Anisotropic kernel)과 주성분 분석(Principal component analysis; PCA)을 GPU상에서 수행하여 유체의 방향성을 빠르게 찾고, 새로운 유체입자의 위치를 결정하기 위해 계산하는, 후보위치 추출 과정의 효율성을 CPU-GPU 이기종 컴퓨팅 기술 기반으로 빠르게 계산한다. 제안된 알고리즘은 직관적으로 구현되며, 병렬화가 쉽고 시각적으로 디테일한 액체의 얇은 표면을 빠르게 애니메이션 할 수 있다.
최근 대용량 그래프의 반복 처리를 위하여 GPU를 이용하는 연구가 진행되고 있다. 메모리가 제한된 GPU를 이용하여 대용량 그래프를 처리하기 위해서는 그래프를 서브 그래프로 분할한 후 서브 그래프들을 스케줄링해서 처리해야 한다. 그러나 활성 정점에 따라 서브 그래프가 처리되기 때문에 그래프 처리 과정 속에서 불필요한 데이터 전송이 반복된다. 본 논문에서는 메모리가 제한된 GPU 환경에서 효율적인 그래프 알고리즘 처리 기법을 제안하고 성능 평가를 수행한다. 제안하는 기법은 그래프 차등 서브 그래프 스케줄링 방법과 그래프 분할 방법으로 구성된다. 대용량 그래프 분할 방법은 GPU에서 효율적으로 처리할 수 있도록 대용량 그래프를 서브 그래프로 분할할 수 있는 방법을 결정한다. 차등 서브그래프 스케줄링 방법은 GPU에서 처리하는 서브그래프를 스케줄링하여 반복적으로 사용되는 HOST-GPU 간의 데이터 중복 전송을 줄인다. 다양한 그래프 처리 알고리즘들의 성능 평가를 수행함으로써 제안하는 기법은 기존 분할 기법 대비 170%, 기존 처리 기법 대비 268% 향상되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.