본 논문에서는 WebAssembly(WASM)를 활용하여 디바이스와 엣지 클라우드 간의 Federated Learning을 수행하는 최적화 전략을 제안한다. 제안된 전략은 일부 학습을 디바이스에서 수행하고, 나머지 학습을 엣지 클라우드에서 수행하여 효율성을 극대화하는 것을 목표로 한다. 특히, GPU 메모리 세그먼트 간 데이터 이동과 연산 작업의 중첩을 최적화하여 전체 학습 시간을 줄이고 GPU 사용률을 향상시키는 방법을 수학적으로 설명하고 평가한다. 다양한 실험 시나리오를 통해 비동기 데이터 전송과 연산 중첩이 학습 시간을 단축하고 GPU 사용률을 향상시키며, 모델 정확도를 증가시킴을 확인하였다. 모든 최적화 기법을 적용한 시나리오에서 학습 시간이 47% 단축되었고, GPU 사용률은 91.2%로 향상 되었으며, 모델 정확도는 89.5%로 증가함을 확인하여 비동기 데이터 전송과 연산 중첩이 데이터 전송을 기다리는 GPU 유휴 시간을 줄이고, 병목 현상을 완화할 수 있음을 확인하였다. 본 연구는 향후 Federated Learning 시스템의 성능 최적화에 기여할 수 있을 것으로 사료된다.
본 논문에서는 최신 안드로이드 기반 상용 스마트폰의 모바일 GPU 성능 향상을 위한 방법론을 제안한다. 동일 하드웨어를 가지고 스마트폰을 개발하더라도 제조사의 역량에 따라 소프트웨어 최적화의 정도가 달라서 그래픽 성능 차이가 날 수 있다. 그러므로 우리는 시스템 소프트웨어 레벨에서 그래픽 품질에 아무런 영향을 주지 않고 성능 향상을 이끌어낼 수 있는 기법에 대해 소개한다. 이를 위해 A사, B사 안드로이드 스마트폰을 대상으로 안드로이드 커널에 따른 분석을 수행하였고, GPU 디바이스 드라이버에 따른 분석을 수행하였으며, 마지막으로 타사 휴대폰과의 성능 비교를 통해 이 결과를 비교 분석하였다. 결과적으로 GPU 디바이스 드라이버 변경과 안드로이드 커널 변경을 시도함으로써 B사 대비 68%의 성능을 보인 A사 스마트폰의 성능을 96%까지 향상시킬 수 있었다.
In this paper, particle swarm optimization(PSO) is newly implemented by CUDA(Compute Unified Device Architecture) and is applied to function optimization with several benchmark functions. CUDA is not CPU but GPU(Graphic Processing Unit) that resolves complex computing problems using parallel processing capacities. In addition, CUDA helps one to develop GPU softwares conveniently. Compared with the optimization result of PSO executed on a general CPU, CUDA saves about 38% of PSO running time as average, which implies that CUDA is a promising frame for real-time optimization and control.
모바일 GPU의 소비 전력이 전체 시스템 소모 전력에서 큰 비중을 차지하게 됨에 따라 스마트폰에서 중요한 전력 관리 대상 중 하나로 대두되었다. 그러나 모바일 GPU로써 널리 사용되는 ARM Mali-400MP의 장치 드라이버를 분석한 결과, 전력 관리 기법으로 사용되는 장치 사용률 기반 DVFS 알고리즘이 부하가 요구하는 성능보다 높은 주파수로 GPU를 동작하게 하여 비효율적인 전력 에너지 소모가 발생하였다. 따라서 본 논문은 장치 사용률뿐만 아니라 스마트폰 응용의 서비스 품질 요소로써 초 당 프레임 수와 배터리 시간을 함께 고려하여 기존 DVFS에서 발생한 비효율적인 주파수 상승을 방지할 수 있는 전력 에너지 최적화 기법을 제안한다. 제안한 에너지 최적화 기법을 적용하면 성능저하 없이 기존 장치 사용률 기반의 DVFS 대비 최대 23%의 에너지 이득을 보였으며, 배터리 시간 연장을 위하여 최대 10%의 성능 하락을 허용한 경우, 최대 33%의 에너지 효율 향상이 가능하였다.
본 논문에서는 법선벡터를 이용해 3D 삼각형 메쉬의 형태를 안정적으로 과장하고 GPU 기반으로 새롭게 설계하는 프레임워크를 제안한다. 우리는 High-boost 메쉬 필터링 알고리즘에서의 Aliasing 문제를 양방향 필터를 적용하여 노이지를 제거하고, GPU 기반에서 설계해 고속화한다.
사물인터넷(IoT), 클라우드 컴퓨팅, 빅데이터 등의 확산으로 애플리케이션에 대한 고속 암호화의 필요성이 대두되고 있다. GPU 최적화는 GPU가 이론적으로 얻은 암호 분석 결과 또는 축소된 버전을 합리적인 시간에 검증하는데 사용될 수 있다. 본 논문에서는 다양한 환경에서 구현되고 있는 PIPO 경량암호를 대상으로 GPU 상에서 구현하였다. PIPO에 대한 무차별 대입 공격을 고려하여 최적 구현하였다. 특히 비트 슬라이싱 기법을 적용한 최적화 구현과 GPU 요소를 최대한 사용하였다. 결과적으로 제안 기법의 구현은 RTX 3060 환경에서 초당 약 195억의 처리량을 보여 이전 연구 보다 약 122배 높은 처리량을 달성하였다.
웹캠은 영상 데이터의 전송시간을 줄이기 위해 메모리 정렬은 고려하지 않는다. 메모리 정렬이 되지 않은 영상 데이터는 GPU에서 처리하기 부적합하며 고속의 영상처리를 위해서는 GPU에서 메모리 최적화가 가능한 색상 형식으로 변환되어야 한다. 본 논문은 웹캠 영상의 색상 형식 변환을 NVIDIA CUDA를 이용하여 가속하는 최적화 기법을 제안한다. 메모리 접근과 쓰레드 구성에 대한 최적화를 진행하였고, 제안하는 구조의 성능 측정과 최적화 정도를 분석하기 위해 GPU 메모리와 연산의 성능을 제한하여 실험하였다. 그 결과 최적화 방법에 따라 최대 68% 이상 성능이 향상됐다.
최근 HD급 동영상이나 3D 어플리케이션과 같은 이전보다 저사양, 모바일 단말에서는 구동하기 힘든 프로그램들에 대한 이용 요구가 확대되면서 처리해야 할 콘텐츠 데이터들이 고용량화 되고 있다. 클라우드 기반의 VDI(Virtual Desktop Infrastructure) 서비스는 이를 처리하기 위해 효율적인 데이터 처리 능력이 필요해졌으며 QoE(Quality of Experience) 보장을 위한 성능 개선 연구가 이슈가 되고 있다. 본 논문에서는 H/W 성능이 향상되어 CPU와 GPU를 탑재한 Thick Client기반의 3가지 Thick-Thin간 VDI 자원 공유 및 위임이 가능한 VDI 서비스에 대해 제안하며, VDI 서비스 성능의 개선을 위해 CPU와 GPU가 혼합된 Heterogeneous 멀티코어 환경에서 CPU와 GPU 병렬 처리 기법인 OpenMP와 CUDA를 활용하여 VDI 서비스 최적화 방안을 제안하고 기존의 VDI와 비교한 성능을 거론한다.
본 논문에서는 연산 최적화 알고리듬 중 PSO(Particle Swarm Optimization) 알고리듬을 NVIDIA사(社)에서 제공한 CUDA(Compute Unified Device Architecture)를 이용하여 새롭게 구현하였다. CUDA는 CPU가 아닌 GPU(Graphic Processing Unit)의 다양한 병렬 처리 능력을 사용해 복잡한 컴퓨팅 문제를 해결하는 소프트웨어 개발을 가능케 하는 기술이다. 이 기술을 연산 최적화 알고리듬 중 PSO에 적용함으로써 알고리듬의 수행 속도를 개선하였다. CUDA를 적용한 PSO 알고리듬의 검증을 위해 언어 기반으로 프로그래밍하고 다양한 Test Function을 통해 시뮬레이션 하였다. 그리고 기존의 PSO 알고리듬과 비교 분석하였다. 또한 알고리듬의 성능 향상으로 여러 가지 최적화 분야에 적용 할 수 있음을 보인다.
본 논문에서는 GPU 병렬 처리 하드웨어 아키텍처 내 최소 물리적 스레드 실행 단위(warp) 내에서 shifted sort 기반 k개 최근접 이웃 검색 기법을 구현하는 방법을 논의하고 일반적으로 동일한 목적으로 널리 사용되는 GPU 기반 kd-tree 및 CPU 기반 ANN 라이브러리와 비교한 결과를 제시한다. 또한 많은 애플리케이션에서 k가 비교적 작은 값이 필요한 경우가 많다는 사실을 고려해서 k가 warp 내부에서 직접 처리 가능한 2, 4, 8, 16개일 때 최적화에 집중한다. 구현 세부에서는 사용한 CUB 공개 라이브러리의 루프 내 메모리 관리 방법, GPU 하드웨어 직접 명령 적용 방법 등의 최적화 방법을 논의한다. 실험 결과, 제안하는 방법은 기존의 GPU 기반 유사 방법에 비해 데이터 지점과 질의 지점의 개수가 각각 $2^{23}$개 일 때 16배 이상의 빠른 처리 속도를 보였으며 이러한 경향은 처리해야 할 데이터의 크기가 커지면 더욱 더 커지는 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.