• Title/Summary/Keyword: GPU Memory

Search Result 152, Processing Time 0.034 seconds

A Performance Study on CPU-GPU Data Transfers of Unified Memory Device (통합메모리 장치에서 CPU-GPU 데이터 전송성능 연구)

  • Kwon, Oh-Kyoung;Gu, Gibeom
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.5
    • /
    • pp.133-138
    • /
    • 2022
  • Recently, as GPU performance has improved in HPC and artificial intelligence, its use is becoming more common, but GPU programming is still a big obstacle in terms of productivity. In particular, due to the difficulty of managing host memory and GPU memory separately, research is being actively conducted in terms of convenience and performance, and various CPU-GPU memory transfer programming methods are suggested. Meanwhile, recently many SoC (System on a Chip) products such as Apple M1 and NVIDIA Tegra that bundle CPU, GPU, and integrated memory into one large silicon package are emerging. In this study, data between CPU and GPU devices are used in such an integrated memory device and performance-related research is conducted during transmission. It shows different characteristics from the existing environment in which the host memory and GPU memory in the CPU are separated. Here, we want to compare performance by CPU-GPU data transmission method in NVIDIA SoC chips, which are integrated memory devices, and NVIDIA SMX-based V100 GPU devices. For the experimental workload for performance comparison, a two-dimensional matrix transposition example frequently used in HPC applications was used. We analyzed the following performance factors: the difference in GPU kernel performance according to the CPU-GPU memory transfer method for each GPU device, the transfer performance difference between page-locked memory and pageable memory, overall performance comparison, and performance comparison by workload size. Through this experiment, it was confirmed that the NVIDIA Xavier can maximize the benefits of integrated memory in the SoC chip by supporting I/O cache consistency.

GPU Memory Management Technique to Improve the Performance of GPGPU Task of Virtual Machines in RPC-Based GPU Virtualization Environments (RPC 기반 GPU 가상화 환경에서 가상머신의 GPGPU 작업 성능 향상을 위한 GPU 메모리 관리 기법)

  • Kang, Jihun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.5
    • /
    • pp.123-136
    • /
    • 2021
  • RPC (Remote Procedure Call)-based Graphics Processing Unit (GPU) virtualization technology is one of the technologies for sharing GPUs with multiple user virtual machines. However, in a cloud environment, unlike CPU or memory, general GPUs do not provide a resource isolation technology that can limit the resource usage of virtual machines. In particular, in an RPC-based virtualization environment, since GPU tasks executed in each virtual machine are performed in the form of multi-process, the lack of resource isolation technology causes performance degradation due to resource competition. In addition, the GPU memory competition accelerates the performance degradation as the resource demand of the virtual machines increases, and the fairness decreases because it cannot guarantee equal performance between virtual machines. This paper, in the RPC-based GPU virtualization environment, analyzes the performance degradation problem caused by resource contention when the GPU memory requirement of virtual machines exceeds the available GPU memory capacity and proposes a GPU memory management technique to solve this problem. Also, experiments show that the GPU memory management technique proposed in this paper can improve the performance of GPGPU tasks.

Memory Delay Comparison between 2D GPU and 3D GPU (2차원 구조 대비 3차원 구조 GPU의 메모리 접근 효율성 분석)

  • Jeon, Hyung-Gyu;Ahn, Jin-Woo;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.1-11
    • /
    • 2012
  • As process technology scales down, the number of cores integrated into a processor increases dramatically, leading to significant performance improvement. Especially, the GPU(Graphics Processing Unit) containing many cores can provide high computational performance by maximizing the parallelism. In the GPU architecture, the access latency to the main memory becomes one of the major reasons restricting the performance improvement. In this work, we analyze the performance improvement of the 3D GPU architecture compared to the 2D GPU architecture quantitatively and investigate the potential problems of the 3D GPU architecture. In general, memory instructions account for 30% of total instructions, and global/local memory instructions constitutes 60% of total memory instructions. Therefore, the performance of the 3D GPU is expected to be improved significantly compared to the 2D GPU by reducing the delay of memory instructions. However, according to our experimental results, the 3D architecture improves the GPU performance only by 2% compared to the 2D architecture due to the memory bottleneck, since the performance reduction due to memory bottleneck in the 3D GPU architecture increases by 245% compared to the 2D architecture. This paper provides the guideline for suitable memory design by analyzing the efficiency of the memory architecture in 3D GPU architecture.

Analysis on the GPU Performance according to Hierarchical Memory Organization (계층적 메모리 구성에 따른 GPU 성능 분석)

  • Choi, Hongjun;Kim, Jongmyon;Kim, Cheolhong
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.3
    • /
    • pp.22-32
    • /
    • 2014
  • Recently, GPGPU has been widely used for general-purpose processing as well as graphics processing by providing optimized hardware for parallel processing. Memory system has big effects on the performance of parallel processing units such as GPU. In the GPU, hierarchical memory architecture is implemented for high memory bandwidth. Moreover, both memory address coalescing and memory request merging techniques are widely used. This paper analyzes the GPU performance according to various memory organizations. According to our simulation results, GPU performance improves by 15.5%, 21.5%, 25.5%, 30.9% as adding 8KB L1, 16KB L1, 32KB L1, 64KB L1 cache, respectively, compared to case without L1 cache. However, experimental results show that some benchmarks decrease performance since memory transaction increases due to data dependency. Moreover, average memory access latency is increased as the depth of hierarchical cache level increases when cache miss occurs significantly.

Implementation of Integrated CPU-GPU for Efficient Uniform Memory Access Method and Verification System (CPU-GPU간 긴밀성을 위한 효율적인 공유메모리 접근 방법과 검증 시스템 구현)

  • Park, Hyun-moon;Kwon, Jinsan;Hwang, Tae-ho;Kim, Dong-Sun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.2
    • /
    • pp.57-65
    • /
    • 2016
  • In this paper, we propose a system for efficient use of shared memory between CPU and GPU. The system, called Fusion Architecture, assures consistency of the shared memory and minimizes cache misses that frequently occurs on Heterogeneous System Architecture or Unified Virtual Memory based systems. It also maximizes the performance for memory intensive jobs by efficient allocation of GPU cores. To test between architectures on various scenarios, we introduce the Fusion Architecture Analyzer, which compares OpenMP, OpenCL, CUDA, and the proposed architecture in terms of memory overhead and process time. As a result, Proposed fusion architectures show that the Fusion Architecture runs benchmarks 55% faster and reduces memory overheads by 220% in average.

Evaluation of the Data Migration between CPU Memory and GPU Memory for a NVIDIA Pascal GPU Using Unified Memory (통합 메모리를 사용하는 NVIDIA 파스칼 GPU에서의 CPU 메모리와 GPU 메모리 간 데이터 통신 분석)

  • Shin, Philkyue;Hong, Seongsoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.7-10
    • /
    • 2018
  • 통합 메모리는 CPU 메모리와 GPU 메모리 간의 데이터 통신을 개발자에게 투명하게 내재적으로 수행하는 소프트웨어 런타임 환경으로 개발자에게 CPU 메모리와 GPU 메모리가 통합된 하나의 메모리로 보이게 해준다. 통합 메모리는 장점에도 불구하고 아직 널리 사용되지 못하고 있는데 그 이유는 내재적으로 수행되는 데이터 통신의 오버헤드가 큰 것으로 알려져 있기 때문이다. 하지만 이 데이터 통신이 구체적으로 어떻게 이루어지고 오버헤드는 어떻게 발생하는지 분석한 연구는 아직 존재하지 않는다. 우리는 NVIDIA 사의 최신 GPU 마이크로아키텍처 중 하나인 파스칼을 사용하는 GPU를 대상으로 하여, 통합 메모리를 사용할 시 데이터 통신이 이루어지는 조건과 GPU 응용의 수행시간에 데이터 통신이 끼치는 영향을 실험을 통해 분석한다. 실험 결과 통합 메모리의 오버헤드는 두 가지 원인 때문에 발생한다. 첫째, 통합 메모리를 사용하면 CPU 또는 GPU가 데이터에 접근할 때마다 이 데이터는 CPU 또는 GPU 메모리로 옮겨지고 옮겨진 데이터는 제거된다. 따라서 재사용할 데이터도 제거되어 추가적인 데이터 통신이 발생하고, 이 데이터 통신의 지연시간은 GPU 응용의 수행시간에 더해진다. 둘째, 통합 메모리를 사용하면 데이터 통신과 커널들이 서로 다른 스트림에 할당되어도 동시에 수행되지 못한다. 따라서 GPU 응용의 수행시간은 동시에 수행되던 데이터 통신과 커널의 수행시간만큼 증가한다.

  • PDF

Memory-Efficient Belief Propagation for Stereo Matching on GPU (GPU 에서의 고속 스테레오 정합을 위한 메모리 효율적인 Belief Propagation)

  • Choi, Young-Kyu;Williem, Williem;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.11a
    • /
    • pp.52-53
    • /
    • 2012
  • Belief propagation (BP) is a commonly used global energy minimization algorithm for solving stereo matching problem in 3D reconstruction. However, it requires large memory bandwidth and data size. In this paper, we propose a novel memory-efficient algorithm of BP in stereo matching on the Graphics Processing Units (GPU). The data size and transfer bandwidth are significantly reduced by storing only a part of the whole message. In order to maintain the accuracy of the matching result, the local messages are reconstructed using shared memory available in GPU. Experimental result shows that there is almost an order of reduction in the global memory consumption, and 21 to 46% saving in memory bandwidth when compared to the conventional algorithm. The implementation result on a recent GPU shows that we can obtain 22.8 times speedup in execution time compared to the execution on CPU.

  • PDF

Implementation of parallel blocked LU decomposition program for utilizing cache memory on GP-GPUs (GP-GPU의 캐시메모리를 활용하기 위한 병렬 블록 LU 분해 프로그램의 구현)

  • Kim, Youngtae;Kim, Doo-Han;Yu, Myoung-Han
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.41-47
    • /
    • 2013
  • GP-GPUs are general purposed GPUs for numerical computation based on multiple threads which are originally for graphic processing. GP-GPUs provide cache memory in a form of shared memory which user programs can access directly, unlikely typical cache memory. In this research, we implemented the parallel block LU decomposition program to utilize cache memory in GP-GPUs. The parallel blocked LU decomposition program designed with Nvidia CUDA C run 7~8 times faster than nun-blocked LU decomposition program in the same GP-GPU computation environment.

A Development of Fusion Processor Architecture for Efficient Main Memory Access in CPU-GPU Environment (CPU-GPU환경에서 효율적인 메인메모리 접근을 위한 융합 프로세서 구조 개발)

  • Park, Hyun-Moon;Kwon, Jin-San;Hwang, Tae-Ho;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.151-158
    • /
    • 2016
  • The HSA resolves an old problem with existing CPU and GPU architectures by allowing both units to directly access each other's memory pools via unified virtual memory. In a physically realized system, however, frequent data exchanges between CPU and GPU for a virtual memory block result bottlenecks and coherence request overheads. In this paper, we propose Fusion Processor Architecture for efficient access of main memory from both CPU and GPU. It consists of Job Manager, Re-mapper, and Pre-fetcher to control, organize, and distribute work loads and working areas for GPU cores. These components help on reducing memory exchanges between the two processors and improving overall efficiency by eliminating faulty page table requests. To verify proposed algorithm architectures, we develop an emulator based on QEMU, and compare several architectures such as CUDA(Compute Unified Device Architecture), OpenMP, OpenCL. As a result, Proposed fusion processor architectures show 198% faster than others by removing unnecessary memory copies and cache-miss overheads.

Analysis of GPU Performance and Memory Efficiency according to Task Processing Units (작업 처리 단위 변화에 따른 GPU 성능과 메모리 접근 시간의 관계 분석)

  • Son, Dong Oh;Sim, Gyu Yeon;Kim, Cheol Hong
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.56-63
    • /
    • 2015
  • Modern GPU can execute mass parallel computation by exploiting many GPU core. GPGPU architecture, which is one of approaches exploiting outstanding computational resources on GPU, executes general-purpose applications as well as graphics applications, effectively. In this paper, we investigate the impact of memory-efficiency and performance according to number of CTAs(Cooperative Thread Array) on a SM(Streaming Multiprocessors), since the analysis of relation between number of CTA on a SM and them provides inspiration for researchers who study the GPU to improve the performance. Our simulation results show that almost benchmarks increasing the number of CTAs on a SM improve the performance. On the other hand, some benchmarks cannot provide performance improvement. This is because the number of CTAs generated from same kernel is a little or the number of CTAs executed simultaneously is not enough. To precisely classify the analysis of performance according to number of CTA on a SM, we also analyze the relations between performance and memory stall, dram stall due to the interconnect congestion, pipeline stall at the memory stage. We expect that our analysis results help the study to improve the parallelism and memory-efficiency on GPGPU architecture.