• Title/Summary/Keyword: GPU 병렬처리

Search Result 250, Processing Time 0.046 seconds

Implementation of a GPU Cluster System using Inexpensive Graphics Devices (저가의 그래픽스 장치를 이용한 GPU 클러스터 시스템 구현)

  • Lee, Jong-Min;Lee, Jung-Hwa;Kim, Seong-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1458-1466
    • /
    • 2011
  • Recently the research on GPGPU has been carried out actively as the performance of GPUs has been increased rapidly. In this paper, we propose the system architecture by benchmarking the existing supercomputer architecture for a cost-effective system using GPUs in low-cost graphics devices and implement a GPU cluster system with eight GPUs. We also make the software development environment that is suitable for the GPU cluster system and use it for the performance evaluation by implementing the n-body problem. According to its result, we found that it is efficient to use multiple GPUs when the problem size is large due to its communication cost. In addition, we could calculate up to eight million celestial bodies by applying the method of calculating block by block to mitigate the problem size constraint due to the limited resource in GPUs.

Face Detection using Skin Color Information and Parallel Processing Method on Multi-Core (멀티코어에서 피부색상 정보와 병렬처리 방법을 이용한 얼굴 검출)

  • Kim, Hong-Hee;Lee, Jae-Heung
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.219-222
    • /
    • 2012
  • 최근 얼굴검출에 관한 연구는 FPGA를 통한 H/W설계부터 DSP, GPU, ARM Core에 효율적인 S/W 설계까지 다양하게 연구되고 있다. 본 연구에서는 Multi-Core에 효과적인 얼굴검출 방법을 제안한다. 피부색을 통한 얼굴 후보를 추출하고 그 외의 배경 이미지는 삭제하여 연산처리를 빠르게 하였다. Viola-Jones가 제안한 얼굴검출 알고리즘을 POSIX Thread를 사용하여 병렬 처리하였고 그 성능을 단일 코어와 멀티코어에서 측정하였다. 단일 코어에서는 성능의 향상이 없었으나 멀티코어에서는 약 1.8배 속도가 향상되었고 검출 성공률은 기존과 동일하였다.

Optimizing Shared Memory Accesses for GPGPU Computations (GPGPU를 위한 공유 메모리 최적화)

  • Tran, Nhat-Phuong;Lee, Myungho;Hong, Sugwon
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.197-199
    • /
    • 2012
  • Recently, a lot of general-purpose application programs in addition to graphic applications have been parallelized for boosting their performance using Graphic Processing Unit (GPU)'s excellent floating-point performance. In order to maximize the application performance on GPUs, optimizing the memory hierarchy and the on-chip caches such as the shared memory is essential. In this paper, we propose techniques to optimize the shared memory, and verify its effectiveness using a pattern matching application program.

The Implementation of Fast 3D Object Tracking using GPU (GPU를 이용한 3차원 고속 물체 추적 알고리즘 구현)

  • Kim, Su-Hyun;Jo, Chang-woo;Jeong, Chang-sung
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.374-376
    • /
    • 2013
  • 증강 현실(Argument Reality)에 대한 관심이 증가함에 따라 빠르고 강건한 물체 추적(Object Tracking)기법의 개발이 큰 이슈가 되고 있다. 특히, 마커를 사용하지 않는 경우에 추적 속도와 정확도의 정보가 이루어지는 강건한 Markerless 3D 추적 기술은 많은 연구가 이루어지고 있다. 본 논문에서는 SIFT(Scale Invariant Feature Transform)를 이용한 특징점 추출 및 매칭 기법을 통하여 높은 정확도의 물체 추적기법을 제안한다. 그리고 실시간으로 적용하기 어려운 SIFT의 느린 특징점 추출과 매칭 단계를 GPU 기반의 병렬화 작업을 통하여 개선시켜 향상된 추적 속도를 보여준다.

CUDA-based Parallel Bi-Conjugate Gradient Matrix Solver for BioFET Simulation (BioFET 시뮬레이션을 위한 CUDA 기반 병렬 Bi-CG 행렬 해법)

  • Park, Tae-Jung;Woo, Jun-Myung;Kim, Chang-Hun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.90-100
    • /
    • 2011
  • We present a parallel bi-conjugate gradient (Bi-CG) matrix solver for large scale Bio-FET simulations based on recent graphics processing units (GPUs) which can realize a large-scale parallel processing with very low cost. The proposed method is focused on solving the Poisson equation in a parallel way, which requires massive computational resources in not only semiconductor simulation, but also other various fields including computational fluid dynamics and heat transfer simulations. As a result, our solver is around 30 times faster than those with traditional methods based on single core CPU systems in solving the Possion equation in a 3D FDM (Finite Difference Method) scheme. The proposed method is implemented and tested based on NVIDIA's CUDA (Compute Unified Device Architecture) environment which enables general purpose parallel processing in GPUs. Unlike other similar GPU-based approaches which apply usually 32-bit single-precision floating point arithmetics, we use 64-bit double-precision operations for better convergence. Applications on the CUDA platform are rather easy to implement but very hard to get optimized performances. In this regard, we also discuss the optimization strategy of the proposed method.

Profiler Design for Evaluating Performance of WebCL Applications (WebCL 기반 애플리케이션의 성능 평가를 위한 프로파일러 설계 및 구현)

  • Kim, Cheolwon;Cho, Hyeonjoong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.8
    • /
    • pp.239-244
    • /
    • 2015
  • WebCL was proposed for high complex computing in Javascript. Since WebCL-based applications are distributed and executed on an unspecified number of general clients, it is important to profile their performances on different clients. Several profilers have been introduced to support various programming languages but WebCL profiler has not been developed yet. In this paper, we present a WebCL profiler to evaluate WebCL-based applications and monitor the status of GPU on which they run. This profiler helps developers know the execution time of applications, memory read/write time, GPU statues such as its power consumption, temperature, and clock speed.

Fast Stereo matching based on Plane-converging Belief Propagation using GPU (Plane-converging Belief Propagation을 이용한 고속 스테레오매칭)

  • Jung, Young-Han;Park, Eun-Soo;Kim, Hak-Il;Huh, Uk-Youl
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.88-95
    • /
    • 2011
  • Stereo matching is the research area that regarding the estimation of the distance between objects and camera using different view points and it still needs lot of improvements in aspects of speed and accuracy. This paper presents a fast stereo matching algorithm based on plane-converging belief propagation that uses message passing convergence in hierarchical belief propagation. Also, stereo matching technique is developed using GPU and it is available for real-time applications. The error rate of proposed Plane-converging Belief Propagation algorithm is similar to the conventional Hierarchical Belief Propagation algorithm, while speed-up factor reaches 2.7 times.

Development of Diffusive Wave Rainfall-Runoff Model Based on CUDA FORTRAN (CUDA FORTEAN기반 확산파 강우유출모형 개발)

  • Kim, Boram;Kim, Hyeong-Jun;Yoon, Kwang Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.287-287
    • /
    • 2021
  • 본 연구에서는 CUDA(Compute Unified Device Architecture) 포트란을 이용하여 확산파 강우 유출모형을 개발하였다. CUDA 포트란은 그래픽 처리 장치(Graphic Processing Unit: GPU)에서 수행하는 병렬 연산 알고리즘을 포트란 언어를 사용하여 작성할 수 있도록 하는 GPU상의 범용계산(General-Purpose Computing on Graphics Processing Units: GPGPU) 기술이다. GPU는 그래픽 처리 작업에 특화된 다수의 산술 논리 장치(Arithmetic Logic Unit: ALU)로 구성되어 있어서 중앙 처리 장치(Central Processing Unit: CPU)보다 한 번에 더 많은 연산 수행이 가능하다. 이에 따라, CUDA 포트란기반 확산파모형은 분포형 강우유출모형의 수치모의 연산시간을 단축시킬 수 있다. 분포형모형의 지배방정식은 확산파모형과 Green-Ampt모형으로 구성되었고, 확산파모형은 유한체적법을 이용하여 이산화 하였다. CUDA 포트란기반 확산파모형의 정확성은 기존 연구된 수리실험 결과 및 CPU기반 강우유출모형과 비교하였으며, 연산소요시간에 대한 효율성은 CPU기반 확산파모형과 비교하였다. 그 결과 CUDA 포트란기반 확산파모형의 결과는 수리실험 결과 및 CPU기반 강우유출모형의 결과와 유사한 결과를 나타냈다. 또한, 연산소요시간은 CPU 기반 확산파모형의 연산소요시간보다 단축되었으며, 본 연구에 사용된 장비를 기준으로 최대 100배 정도 단축되었다.

  • PDF

Fast and Efficient Implementation of Neural Networks using CUDA and OpenMP (CUDA와 OPenMP를 이용한 빠르고 효율적인 신경망 구현)

  • Park, An-Jin;Jang, Hong-Hoon;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.4
    • /
    • pp.253-260
    • /
    • 2009
  • Many algorithms for computer vision and pattern recognition have recently been implemented on GPU (graphic processing unit) for faster computational times. However, the implementation has two problems. First, the programmer should master the fundamentals of the graphics shading languages that require the prior knowledge on computer graphics. Second, in a job that needs much cooperation between CPU and GPU, which is usual in image processing and pattern recognition contrary to the graphic area, CPU should generate raw feature data for GPU processing as much as possible to effectively utilize GPU performance. This paper proposes more quick and efficient implementation of neural networks on both GPU and multi-core CPU. We use CUDA (compute unified device architecture) that can be easily programmed due to its simple C language-like style instead of GPU to solve the first problem. Moreover, OpenMP (Open Multi-Processing) is used to concurrently process multiple data with single instruction on multi-core CPU, which results in effectively utilizing the memories of GPU. In the experiments, we implemented neural networks-based text extraction system using the proposed architecture, and the computational times showed about 15 times faster than implementation on only GPU without OpenMP.

Trends of Hardware Acceleration Technology in Wed Browser (HW 가속 기반 웹 고속화 기술동향)

  • Lee, J.H.;Cho, H.W.;Kim, D.H.;Lee, H.S.;Yoon, S.J.;Ryu, C.;Cho, C.S.
    • Electronics and Telecommunications Trends
    • /
    • v.31 no.4
    • /
    • pp.65-76
    • /
    • 2016
  • 특정 제조사의 단말 또는 운영체제에 의존성이 없는 플랫폼 독립적인 웹은 높은 이식성, 소프트웨어의 재활용, 개발 생산성, 풍부한 개발자 존재, 유지 보수 면에서 장점을 가지나, 화려한 UI/UX를 제공하는 네이티브 응용에 비해 낮은 성능으로 웹 기반의 응용 개발 및 보급이 크게 활성화되지 못했다. 한편 데스크톱은 물론 모바일 단말의 멀티코어 기반 Graphic Processing Unit(GPU), CPU 탑재 등 HW 고사양화와 웹 응용에서도 HW 가속 기능을 활용할 수 있는 표준 제공으로 성능 제약을 극복할 수 있게 되었다. 본고에서는 GPU 발전동향을 살펴보고, 고속 렌더링 및 병렬 연산처리를 요구하는 웹 응용이 GPU기반 HW 가속 기능을 활용할 수 있는 크로노스 그룹의 그래픽 가속(Web Graphics Library: WebGL) 및 컴퓨팅(Web Computing Language: WebCL) 지원 표준 규격을 정리한다. 또한, 최근 차세대 GPU Application Programming Interface(API)로 발표된 Vulkan에 대해 알아보고, 웹 고속화 기술에 적용 가능성에 대해 전망한다.

  • PDF