• 제목/요약/키워드: GPU 병렬처리

검색결과 250건 처리시간 0.028초

GPU를 활용한 동형암호 구현 동향 (Trends in Implementation of Homomorphic Encryption using GPU)

  • 엄시우;김현준;임세진;서화정
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.213-215
    • /
    • 2022
  • 빅데이터, 인공지능, 클라우드 등의 기술이 발전함에 따라서 개인 정보나 중요 데이터가 많이 노출되고 있다. 동형암호는 암호화된 데이터에 대해서 직접 연산이 가능한 암호체계이다. 이러한 특성은 오늘날 클라우드 컴퓨팅 플랫폼에 매우 중요한 기술이지만, 많은 연산으로 인해 처리 시간이 오래 걸려 많이 사용되어 오고 있지 않다, GPU는 병렬 연산의 특성을 활용하여 CPU가 담당하는 작업을 훨씬 효율적으로 작업하는 것이 가능하다. 본 논문에서는 GPU를 활용하여 동형 암호의 속도 향상을 위한 기법 연구 동향에 대해 알아본다.

NeRF, PBD 및 병렬 리샘플링을 결합한 실시간 3D 볼륨 변형체 시각화 (Real-Time 3D Volume Deformation and Visualization by Integrating NeRF, PBD, and Parallel Resampling)

  • 권상민;전소진;박준이;김다솔;계희원
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제30권3호
    • /
    • pp.189-198
    • /
    • 2024
  • 딥러닝 기반 모델과 물리 시뮬레이션을 결합한 연구는 의료 분야에서 중요한 발전을 이루고 있다. 이는 의료영상 데이터에서 필요한 정보를 추출하고, 물리적 법칙을 기반으로 골격 및 연조직의 변형에 대한 빠르고 정확한 예측을 가능하게 한다. 본 연구는 신경 방사 필드(NeRF), 위치 기반 동역학(PBD), 병렬 리샘플링을 융합하여 3D 볼륨데이터를 쉽게 생성하고 실시간으로 변형 및 시각화하는 시스템을 제안한다. NeRF는 2D 이미지와 카메라 좌표 정보를 사용해 고해상도 3D 볼륨 데이터를 생성하며, PBD는 물리 기반 시뮬레이션으로 획득한 데이터에 대한 실시간 변형과 상호작용을 가능하게 한다. 병렬 리샘플링은 사면체 메쉬와 GPU 병렬 처리를 통해 렌더링 효율성을 높인다. 이 시스템은 광선투사방식으로 렌더링 되어 빠른 실시간 시각화를 제공하며, 비싼 장비 없이 간단하게 3D 데이터를 생성하고 변형할 수 있어 공학, 교육, 의료 등 다양한 분야에서의 활용 가능성을 보여준다.

OpenGL과 Unity간의 GPU를 이용한 Particle Simulation의 성능 비교 (Performance Comparison of Particle Simulation Using GPU Between OpenGL and Unity)

  • 김민상;성낙준;최유주;홍민
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권10호
    • /
    • pp.479-486
    • /
    • 2017
  • 최근 GPGPU를 이용하여 저하된 컴퓨터 성능 향상폭을 높일 수 있게 되었고, 이로 인하여 높은 연산을 요구로 하는 물리 기반의 실시간 시뮬레이션을 PC에서 구동할 수 있게 되었다. 물리 시뮬레이션에서 적용되는 물리 계산은 병렬 처리로 수행되어질 수 있으며, 최근 OpenGL 4.3 및 Unity4.0에서 지원되는 Compute shader를 통한 병렬 연산을 이용하면 효율적으로 구동할 수 있다. 본 논문에서는 다양한 플랫폼을 지원하는 디지털 콘텐츠 제작 툴인 Unity와 다양한 플랫폼에서 구동되어지는 OpenGL에서의 실시간 물리 시뮬레이션에서의 성능을 측정 및 비교한다. 본 논문에서 particle 시뮬레이션의 실험 결과 Unity를 이용한 particle 시뮬레이션이 OpenGL을 이용한 particle 시뮬레이션에 비해 최대 136.04% 빠른 성능을 보인다. 이를 통하여 추후 멀티 플랫폼을 지원하는 디지털 콘텐츠를 제작함에 있어 더 나은 개발 도구를 선정할 수 있을 것으로 기대된다.

CUDA 를 이용한 가상 객체들간의 병렬 충돌 검사 알고리즘 (Parallel Intersection Detection Algorithm using CUDA)

  • 이연희;김영준
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.451-455
    • /
    • 2008
  • CUDA 는 GPGPU 프로그래밍을 위해 nVIDIA 사에서 개발한 병렬 처리 프로그래밍 개발환경이다. 본 논문에서는 가상 객체들 간의 삼각형 충돌 검사 부분을 CUDA 를 이용해 병렬적으로 구현하였다. 삼각형 충돌 검사는 실시간 충돌 검사 시 주요 병목현상을 일으키는 부분이다. 하지만 CPU 와 GPU 간의 데이터 전송 지연 문제 때문에 기존의 오브젝트 스페이스상의 GPU 기반의 충돌 검사 방법으로는 이 병목현상을 해결하기 어려웠다. 그러나 데이터 전송 지연 문제를 크게 완화시킨 CUDA 를 이용해 데이터 전송에 소모되는 비용을 줄이고 또한 삼각형 충돌 검사를 병렬적으로 수행함으로써 가상 객체를 형성하는 삼각형 집합들의 충돌검사 알고리즘의 성능을 크게 향상시킬 수 있었다.

  • PDF

OpenCL을 이용한 JPEG2000 4K 초고화질 영상처리의 병렬고속화 구현 (A Parallel Implementation of JPEG2000 4K Ultra High Definition Image using OpenCL)

  • 박대승;김정길
    • 한국위성정보통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.1-5
    • /
    • 2015
  • 멀티미디어 기술의 급속한 발전과 사용자의 대형 화면에 대한 선호도가 높아지는 가운데 새로운 영상 압축 기술인 HEVC(High Efficiency Video Coding) 고화질 영상 압축 표준을 탄생시켰으며, 그 결과 기존의 HD급 영상보다 4배 이상, 16배까지 선명한 초고화질 UHD(Ultra High Definition) 영상 서비스가 새롭게 주목받고 있다. 또한 JPEG 2000 압축도 기존 처리되던 픽셀 이미지를 넘어 초고화질 해상도 이미지(4K : $3,840{\times}2,160$ 또는 8K : $7680{\times}4320$)를 처리 지원을 하고 있다. 따라서 초고화질 이미지의 획득 및 저장을 위해서는 고속의 처리 기술이 필요하다. 이에 본 논문은 초고화질 해상도 이미지의 고속 처리를 위한 병렬처리 기술에 대한 연구를 위하여, JPEG 2000의 처리 과정을 살펴보고 전처리 단계인 색공간 변환 알고리즘 적용을 위하여 GPU환경에서 병렬 컴퓨팅을 통해 처리속도를 향상시키는 방법을 제안한다. 병렬화한 알고리즘의 구현은 OpenCL(Open Computing Language)을 이용하였다. 실험 결과 사용자 정의 쓰레드 기반 고속 처리와 비교하여 초고화질 해상도 이미지(UHD 4K : $3,840{\times}2,160$)를 기준으로 최대 5배의 성능 향상의 결과를 보여주었다.

컴퓨터 생성 홀로그래피의 GPU 기반 가속화 이슈 및 전망

  • 신승협
    • 방송과미디어
    • /
    • 제24권2호
    • /
    • pp.32-38
    • /
    • 2019
  • 컴퓨터 생성 홀로그래피(CGH)는 광파의 진행을 수치적으로 시뮬레이션하여 홀로그램 영상을 합성하는 연구분야이다. 실물 기반 홀로그램으로는 제작하기 어려운 다양한 가상 장면을 다룰 수 있으며 복잡한 광학계 구축 문제로부터 자유로운 장점 등으로 인하여 많은 연구가 진행되고 있다. 특히 대규모 병렬 처리가 가능한 범용 GPU의 발전은 CGH 실용화의 견인차가 되고 있다. 본 고에서는 CGH의 원리 소개와 함께 GPU에 기반한 CGH 고속화의 이슈 및 향후 전망을 살펴보고자 한다.

Boyer-Moore 알고리즘을 위한 GPU상에서의 병렬 최적화 (Parallelization and Performance Optimization of the Boyer-Moore Algorithm on GPU)

  • 정요상;쟌느앗-프엉;이명호;남덕윤;김직수;황순욱
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권2호
    • /
    • pp.138-143
    • /
    • 2015
  • Boyer-Moore 알고리즘은 컴퓨터 및 인터넷 보안, 바이오 인포매틱스 등의 응용프로그램에서 널리 활용되는 패턴매칭 알고리즘이다. 이 알고리즘은 방대한 양의 입력 데이터에 존재하는 특정한 하나의 패턴을 실시간에 검색해야하는 높은 계산 요구량으로 인하여 병렬 처리 및 성능 최적화가 필수적이다. 본 논문에서는 GPU를 활용하여 BM 알고리즘을 병렬 최적화하는 방법론을 제안한다. 방법론에 따라 알고리즘 cascading 기법을 적용하여 실행시간에 소요되는 매핑 오버헤드를 최소화하고, 멀티스레딩 효과를 극대화하여 스레드들간의 부하 부산을 향상시킴으로써 순차실행 대비 최대 45배의 성능향상을 얻었다.

인공지능 기반 서비스 로봇을 위한 영상처리 프로세서 설계 (Image Processing Processor Design for Artificial Intelligence Based Service Robot)

  • 문지윤;김수민
    • 한국전자통신학회논문지
    • /
    • 제17권4호
    • /
    • pp.633-640
    • /
    • 2022
  • 다양한 분야에 서비스 로봇이 적용됨에 따라 각 임무에 적합한 영상처리 알고리즘을 빠르고 정확하게 수행할 수 있는 영상처리 프로세서에 관한 관심이 높아지고 있다. 본 논문에서는 로봇에 적용 가능한 영상처리 프로세서 설계방법을 소개한다. 제안한 프로세서는 CPU, GPU, FPGA가 융합된 형태로 AGX 보드, FPGA 보드, LiDAR-Vision 보드, Backplane 보드로 구성된다. 제안한 방법은 시뮬레이션 실험을 통해 검증한다.

유전 알고리즘과 게임 트리를 병합한 오목 인공지능 설계 및 GPU 기반 병렬 처리 기법 (Design of Omok AI using Genetic Algorithm and Game Trees and Their Parallel Processing on the GPU)

  • 안일준;박인규
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제37권2호
    • /
    • pp.66-75
    • /
    • 2010
  • 본 논문에서는 GPU(graphics processing unit)를 이용하여 오목의 인공지능 알고리즘 연산을 고속으로 수행하기 위한 효율적인 알고리즘 설계와 구현 방법을 제안한다. 본 논문에서 제안하는 게임 인공지능은 최소-최대 게임 트리(min-max game tree)와 유전 알고리즘(genetic algorithm)의 협업적 구조로 설계된다. 게임 트리와 유전 알고리즘의 평가함수(evaluation function) 부분은 많은 계산 량을 소모하지만 해 공간(solution space)의 수많은 후보 벡터에 대해 독립적으로 수행되기 때문에 본 논문에서는 이를 GPU 상에서의 대량 병렬처리를 통해 수행한다. NVIDIA CUDA(compute unified device architecture)환경에서의 실제 구현을 통해 CPU에서의 처리에 비해 게임 트리는 400배 이상의 수행 속도의 향상을, 유전 알고리즘은 300배 이상의 수행 속도의 향상을 각각 보였다. 본 논문에서는 스레드(thread)의 넘침(overflow)을 피하고 보다 효과적인 해 공간 탐색을 위해, 게임 트리를 이용하여 근방의 몇 단계까지 전역 탐색(full search)을 수행한 후 이후 단계는 유전 알고리즘을 이용하여 선별 탐색을 수행하는 협업적 인공지능을 제안한다. 다양한 실험 결과를 통해 제안하는 알고리즘은 게임의 인공지능을 향상시키고 게임의 규칙으로부터 주어진 시간 내에 문제를 해결할 수 있음을 보인다.

GPU-Optimized BVH and R-Triangle Methods for Rapid Self-Intersection Handling in Fabrics

  • Jong-Hyun Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권8호
    • /
    • pp.59-65
    • /
    • 2024
  • 본 논문에서는 삼각형 메쉬 기반 옷감 시뮬레이션에서 계산이 큰 자기충돌(Self-collision) 처리를 GPU 기반으로 가속화하는 방법을 소개한다. CUDA(Compute Unified Device Architecture) 기반 병렬 최적화를 위해, 본 논문에서는 1) GPU에서 BVH(Bounding Volume Hierarchy) 트리를 효율적으로 구축, 업데이트 및 순회하는 방법을 제안하고, 2) 삼각형 메쉬 기반에서는 R-Triangle(Representative-Triangle) 기법을 GPU에서 최적화하여 프리미티브 충돌 검사를 최소화한다. 결과적으로, 제안된 방법은 GPU 환경에서 옷감 시뮬레이션의 자기충돌과 객체 충돌을 CPU기반 알고리즘에 비해 빠르고 효율적으로 처리할 수 있으며, 다양한 장면에서 실험한 결과 5배~10배정도 빠른 시뮬레이션 결과를 얻을 수 있다. 본 논문에서 제안하는 방법은 BVH를 GPU에서 최적화했기 때문에 BVH를 기반으로 활용하는 다양한 알고리즘과 분야에 쉽게 통합이 가능하다.