빅데이터, 인공지능, 클라우드 등의 기술이 발전함에 따라서 개인 정보나 중요 데이터가 많이 노출되고 있다. 동형암호는 암호화된 데이터에 대해서 직접 연산이 가능한 암호체계이다. 이러한 특성은 오늘날 클라우드 컴퓨팅 플랫폼에 매우 중요한 기술이지만, 많은 연산으로 인해 처리 시간이 오래 걸려 많이 사용되어 오고 있지 않다, GPU는 병렬 연산의 특성을 활용하여 CPU가 담당하는 작업을 훨씬 효율적으로 작업하는 것이 가능하다. 본 논문에서는 GPU를 활용하여 동형 암호의 속도 향상을 위한 기법 연구 동향에 대해 알아본다.
딥러닝 기반 모델과 물리 시뮬레이션을 결합한 연구는 의료 분야에서 중요한 발전을 이루고 있다. 이는 의료영상 데이터에서 필요한 정보를 추출하고, 물리적 법칙을 기반으로 골격 및 연조직의 변형에 대한 빠르고 정확한 예측을 가능하게 한다. 본 연구는 신경 방사 필드(NeRF), 위치 기반 동역학(PBD), 병렬 리샘플링을 융합하여 3D 볼륨데이터를 쉽게 생성하고 실시간으로 변형 및 시각화하는 시스템을 제안한다. NeRF는 2D 이미지와 카메라 좌표 정보를 사용해 고해상도 3D 볼륨 데이터를 생성하며, PBD는 물리 기반 시뮬레이션으로 획득한 데이터에 대한 실시간 변형과 상호작용을 가능하게 한다. 병렬 리샘플링은 사면체 메쉬와 GPU 병렬 처리를 통해 렌더링 효율성을 높인다. 이 시스템은 광선투사방식으로 렌더링 되어 빠른 실시간 시각화를 제공하며, 비싼 장비 없이 간단하게 3D 데이터를 생성하고 변형할 수 있어 공학, 교육, 의료 등 다양한 분야에서의 활용 가능성을 보여준다.
최근 GPGPU를 이용하여 저하된 컴퓨터 성능 향상폭을 높일 수 있게 되었고, 이로 인하여 높은 연산을 요구로 하는 물리 기반의 실시간 시뮬레이션을 PC에서 구동할 수 있게 되었다. 물리 시뮬레이션에서 적용되는 물리 계산은 병렬 처리로 수행되어질 수 있으며, 최근 OpenGL 4.3 및 Unity4.0에서 지원되는 Compute shader를 통한 병렬 연산을 이용하면 효율적으로 구동할 수 있다. 본 논문에서는 다양한 플랫폼을 지원하는 디지털 콘텐츠 제작 툴인 Unity와 다양한 플랫폼에서 구동되어지는 OpenGL에서의 실시간 물리 시뮬레이션에서의 성능을 측정 및 비교한다. 본 논문에서 particle 시뮬레이션의 실험 결과 Unity를 이용한 particle 시뮬레이션이 OpenGL을 이용한 particle 시뮬레이션에 비해 최대 136.04% 빠른 성능을 보인다. 이를 통하여 추후 멀티 플랫폼을 지원하는 디지털 콘텐츠를 제작함에 있어 더 나은 개발 도구를 선정할 수 있을 것으로 기대된다.
CUDA 는 GPGPU 프로그래밍을 위해 nVIDIA 사에서 개발한 병렬 처리 프로그래밍 개발환경이다. 본 논문에서는 가상 객체들 간의 삼각형 충돌 검사 부분을 CUDA 를 이용해 병렬적으로 구현하였다. 삼각형 충돌 검사는 실시간 충돌 검사 시 주요 병목현상을 일으키는 부분이다. 하지만 CPU 와 GPU 간의 데이터 전송 지연 문제 때문에 기존의 오브젝트 스페이스상의 GPU 기반의 충돌 검사 방법으로는 이 병목현상을 해결하기 어려웠다. 그러나 데이터 전송 지연 문제를 크게 완화시킨 CUDA 를 이용해 데이터 전송에 소모되는 비용을 줄이고 또한 삼각형 충돌 검사를 병렬적으로 수행함으로써 가상 객체를 형성하는 삼각형 집합들의 충돌검사 알고리즘의 성능을 크게 향상시킬 수 있었다.
멀티미디어 기술의 급속한 발전과 사용자의 대형 화면에 대한 선호도가 높아지는 가운데 새로운 영상 압축 기술인 HEVC(High Efficiency Video Coding) 고화질 영상 압축 표준을 탄생시켰으며, 그 결과 기존의 HD급 영상보다 4배 이상, 16배까지 선명한 초고화질 UHD(Ultra High Definition) 영상 서비스가 새롭게 주목받고 있다. 또한 JPEG 2000 압축도 기존 처리되던 픽셀 이미지를 넘어 초고화질 해상도 이미지(4K : $3,840{\times}2,160$ 또는 8K : $7680{\times}4320$)를 처리 지원을 하고 있다. 따라서 초고화질 이미지의 획득 및 저장을 위해서는 고속의 처리 기술이 필요하다. 이에 본 논문은 초고화질 해상도 이미지의 고속 처리를 위한 병렬처리 기술에 대한 연구를 위하여, JPEG 2000의 처리 과정을 살펴보고 전처리 단계인 색공간 변환 알고리즘 적용을 위하여 GPU환경에서 병렬 컴퓨팅을 통해 처리속도를 향상시키는 방법을 제안한다. 병렬화한 알고리즘의 구현은 OpenCL(Open Computing Language)을 이용하였다. 실험 결과 사용자 정의 쓰레드 기반 고속 처리와 비교하여 초고화질 해상도 이미지(UHD 4K : $3,840{\times}2,160$)를 기준으로 최대 5배의 성능 향상의 결과를 보여주었다.
컴퓨터 생성 홀로그래피(CGH)는 광파의 진행을 수치적으로 시뮬레이션하여 홀로그램 영상을 합성하는 연구분야이다. 실물 기반 홀로그램으로는 제작하기 어려운 다양한 가상 장면을 다룰 수 있으며 복잡한 광학계 구축 문제로부터 자유로운 장점 등으로 인하여 많은 연구가 진행되고 있다. 특히 대규모 병렬 처리가 가능한 범용 GPU의 발전은 CGH 실용화의 견인차가 되고 있다. 본 고에서는 CGH의 원리 소개와 함께 GPU에 기반한 CGH 고속화의 이슈 및 향후 전망을 살펴보고자 한다.
Boyer-Moore 알고리즘은 컴퓨터 및 인터넷 보안, 바이오 인포매틱스 등의 응용프로그램에서 널리 활용되는 패턴매칭 알고리즘이다. 이 알고리즘은 방대한 양의 입력 데이터에 존재하는 특정한 하나의 패턴을 실시간에 검색해야하는 높은 계산 요구량으로 인하여 병렬 처리 및 성능 최적화가 필수적이다. 본 논문에서는 GPU를 활용하여 BM 알고리즘을 병렬 최적화하는 방법론을 제안한다. 방법론에 따라 알고리즘 cascading 기법을 적용하여 실행시간에 소요되는 매핑 오버헤드를 최소화하고, 멀티스레딩 효과를 극대화하여 스레드들간의 부하 부산을 향상시킴으로써 순차실행 대비 최대 45배의 성능향상을 얻었다.
다양한 분야에 서비스 로봇이 적용됨에 따라 각 임무에 적합한 영상처리 알고리즘을 빠르고 정확하게 수행할 수 있는 영상처리 프로세서에 관한 관심이 높아지고 있다. 본 논문에서는 로봇에 적용 가능한 영상처리 프로세서 설계방법을 소개한다. 제안한 프로세서는 CPU, GPU, FPGA가 융합된 형태로 AGX 보드, FPGA 보드, LiDAR-Vision 보드, Backplane 보드로 구성된다. 제안한 방법은 시뮬레이션 실험을 통해 검증한다.
본 논문에서는 GPU(graphics processing unit)를 이용하여 오목의 인공지능 알고리즘 연산을 고속으로 수행하기 위한 효율적인 알고리즘 설계와 구현 방법을 제안한다. 본 논문에서 제안하는 게임 인공지능은 최소-최대 게임 트리(min-max game tree)와 유전 알고리즘(genetic algorithm)의 협업적 구조로 설계된다. 게임 트리와 유전 알고리즘의 평가함수(evaluation function) 부분은 많은 계산 량을 소모하지만 해 공간(solution space)의 수많은 후보 벡터에 대해 독립적으로 수행되기 때문에 본 논문에서는 이를 GPU 상에서의 대량 병렬처리를 통해 수행한다. NVIDIA CUDA(compute unified device architecture)환경에서의 실제 구현을 통해 CPU에서의 처리에 비해 게임 트리는 400배 이상의 수행 속도의 향상을, 유전 알고리즘은 300배 이상의 수행 속도의 향상을 각각 보였다. 본 논문에서는 스레드(thread)의 넘침(overflow)을 피하고 보다 효과적인 해 공간 탐색을 위해, 게임 트리를 이용하여 근방의 몇 단계까지 전역 탐색(full search)을 수행한 후 이후 단계는 유전 알고리즘을 이용하여 선별 탐색을 수행하는 협업적 인공지능을 제안한다. 다양한 실험 결과를 통해 제안하는 알고리즘은 게임의 인공지능을 향상시키고 게임의 규칙으로부터 주어진 시간 내에 문제를 해결할 수 있음을 보인다.
본 논문에서는 삼각형 메쉬 기반 옷감 시뮬레이션에서 계산이 큰 자기충돌(Self-collision) 처리를 GPU 기반으로 가속화하는 방법을 소개한다. CUDA(Compute Unified Device Architecture) 기반 병렬 최적화를 위해, 본 논문에서는 1) GPU에서 BVH(Bounding Volume Hierarchy) 트리를 효율적으로 구축, 업데이트 및 순회하는 방법을 제안하고, 2) 삼각형 메쉬 기반에서는 R-Triangle(Representative-Triangle) 기법을 GPU에서 최적화하여 프리미티브 충돌 검사를 최소화한다. 결과적으로, 제안된 방법은 GPU 환경에서 옷감 시뮬레이션의 자기충돌과 객체 충돌을 CPU기반 알고리즘에 비해 빠르고 효율적으로 처리할 수 있으며, 다양한 장면에서 실험한 결과 5배~10배정도 빠른 시뮬레이션 결과를 얻을 수 있다. 본 논문에서 제안하는 방법은 BVH를 GPU에서 최적화했기 때문에 BVH를 기반으로 활용하는 다양한 알고리즘과 분야에 쉽게 통합이 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.