Journal of Information Technology Applications and Management
/
제31권4호
/
pp.121-137
/
2024
This research studies NPCs applied by Generative Pre-trained Transformer (GPT) Technology. This study set three independent variables as characteristics of the NPCs applied GPT. User immersion is set as a mediator variable, while user game satisfaction and loyalty are chosen as dependent variables. The Stimulus-Organism-Response (SOR) theory is employed to study user attitude changes, and immersion is examined through the Flow Theory. The study found that interactions between NPCs and users directly and indirectly influence user satisfaction and loyalty. This suggests that NPCs capable of providing users with desired information, rather than merely following predetermined protocols, can enhance the user's affinity for the game. Furthermore, the intelligence and human-likeness of NPCs were found to indirectly influence satisfaction and loyalty through immersion. These findings underscore the importance of GPT-applied NPCs in the gaming industry, with potential implications for the future development and enhancement of such NPCs within games.
ChatGPT(Chat과 Generative Pre-trained Transformer의 합성어)는 사용자와 주고받는 대화의 과정을 통해 질문에 답하도록 설계된 대형언어모델로, 지도학습과 강화학습을 모두 사용하여 세밀하게 조정된 인공지능 챗봇이다. ChatGPT는 주고받은 대화와 대화의 문맥을 기억할 수 있으며, 보고서나 실제로 작동하는 파이썬 코드를 비롯한 인간과 유사하게 상세하고 논리적인 글을 만들어 낼 수 있다고 알려져있다. 본 연구에서는 수자원시스템분야의 문제해결에 있어 ChatGPT의 적용가능성을 사례기반으로 확인하고, ChatGPT의 올바른 활용을 위해 필요한 사항에 대해 고찰하였다. 수자원시스템분야의 대표적인 연구주제인 상수관망시스템의 누수인지와 수리해석을 통한 문제해결에 ChatGPT를 활용하였다. 즉, 딥러닝 기반의 데이터분석을 활용한 누수인지와 오픈소스기반의 수리해석 모델을 활용한 관망시스템 적정 분석을 목표로 ChatGPT와 대화를 진행하고, ChatGPT에 의해 제안된 코드를 구동하여 결과를 분석하였다. ChatGPT가 제시한 코드의 구동결과를 사전에 연구자가 직접 구현한 코드구동 결과와 비교분석하였다. 분석결과 ChatGPT가 제시한 코드가 보다 더 간결할 수 있으며, 상대적으로 경쟁력 있는 결과를 도출하는 것을 확인하였다. 다만, 상대적으로 간결한 코드와 우수한 구동결과를 획득하기 위해서는 해당 도메인의 전문적 지식을 바탕으로 적절한 다수의 질문을 해야 하며, ChatGPT에 의해 작성된 코드의 의미를 명확히 해석하거나 비판적 분석을 하기 위해서는 전문가지식이 반드시 필요함을 알 수 있었다.
COVID-19 가 사실상 종식됨에 따라 대학 강의가 비대면 온라인 강의에서 대면 강의로 전환되었다. 온라인 강의에서는 다시 보기를 통한 복습이 가능했지만, 대면강의에서는 녹음을 통해서 이를 대체하고 있다. 하지만 다시 보기와 녹음본은 원하는 부분을 찾거나 내용을 요약하는데 있어서 시간이 오래 걸리고 불편하다. 본 논문에서는 강의 내용을 STT(Speech-to-Text) 기술을 활용하여 텍스트로 변환하고 ChatGPT(Chat-Generative Pre-trained Transformer)로 요약하는 애플리케이션을 제안한다.
International Journal of Computer Science & Network Security
/
제23권4호
/
pp.15-24
/
2023
One of the objectives and aspirations of scientists and engineers ever since the development of computers has been to interact naturally with machines. Hence features of artificial intelligence (AI) like natural language processing and natural language generation were developed. The field of AI that is thought to be expanding the fastest is interactive conversational systems. Numerous businesses have created various Virtual Personal Assistants (VPAs) using these technologies, including Apple's Siri, Amazon's Alexa, and Google Assistant, among others. Even though many chatbots have been introduced through the years to diagnose or treat psychological disorders, we are yet to have a user-friendly chatbot available. A smart generative cognitive behavioral therapy with spoken dialogue systems support was then developed using a model Persona Perception (P2) bot with Generative Pre-trained Transformer-2 (GPT-2). The model was then implemented using modern technologies in VPAs like voice recognition, Natural Language Understanding (NLU), and text-to-speech. This system is a magnificent device to help with voice-based systems because it can have therapeutic discussions with the users utilizing text and vocal interactive user experience.
비대면 교육이 증가함에 따라 강의, 특강과 같은 정보성 동영상의 수가 급격히 많아지고 있다. 이러한 정보성 동영상을 보아야 하는 학습자들은 자원과 시간을 효율적으로 활용할 수 있는 동영상 이해 및 학습 시스템이 필요하다. 본 논문에서는 GPT-3 모델과 KoNLPy 사용하여 동영상 요약을 수행하고 키워드 기반 해당 영상 프레임으로 바로 갈 수 있는 시스템의 개발내용에 대해 기술한다. 이를 통해 동영상 콘텐츠를 효과적으로 활용하여 학습자들의 학습 효율성을 향상시킬 수 있을 것으로 기대한다.
근래에 트랜스포머(Transformer) 구조를 기초로 하는 ChatGPT와 같은 생성모델이 크게 주목받고 있다. 트랜스포머는 다양한 신경망 모델에 응용되는데, 구글의 BERT(bidirectional encoder representations from Transformers) 문장생성 모델에도 사용된다. 본 논문에서는, 한글로 작성된 영화 리뷰에 대한 댓글이 긍정적인지 부정적인지를 판단하는 텍스트 이진 분류모델을 생성하기 위해서, 사전 학습되어 공개된 BERT 다국어 문장생성 모델을 미세조정(fine tuning)한 후, 새로운 한국어 학습 데이터셋을 사용하여 전이학습(transfer learning) 시키는 방법을 제안한다. 이를 위해서 104 개 언어, 12개 레이어, 768개 hidden과 12개의 집중(attention) 헤드 수, 110M 개의 파라미터를 사용하여 사전 학습된 BERT-Base 다국어 문장생성 모델을 사용했다. 영화 댓글을 긍정 또는 부정 분류하는 모델로 변경하기 위해, 사전 학습된 BERT-Base 모델의 입력 레이어와 출력 레이어를 미세 조정한 결과, 178M개의 파라미터를 가지는 새로운 모델이 생성되었다. 미세 조정된 모델에 입력되는 단어의 최대 개수 128, batch_size 16, 학습 횟수 5회로 설정하고, 10,000건의 학습 데이터셋과 5,000건의 테스트 데이터셋을 사용하여 전이 학습시킨 결과, 정확도 0.9582, 손실 0.1177, F1 점수 0.81인 문장 감정 이진 분류모델이 생성되었다. 데이터셋을 5배 늘려서 전이 학습시킨 결과, 정확도 0.9562, 손실 0.1202, F1 점수 0.86인 모델을 얻었다.
Kiduk Kim;Kyungjin Cho;Ryoungwoo Jang;Sunggu Kyung;Soyoung Lee;Sungwon Ham;Edward Choi;Gil-Sun Hong;Namkug Kim
Korean Journal of Radiology
/
제25권3호
/
pp.224-242
/
2024
The emergence of Chat Generative Pre-trained Transformer (ChatGPT), a chatbot developed by OpenAI, has garnered interest in the application of generative artificial intelligence (AI) models in the medical field. This review summarizes different generative AI models and their potential applications in the field of medicine and explores the evolving landscape of Generative Adversarial Networks and diffusion models since the introduction of generative AI models. These models have made valuable contributions to the field of radiology. Furthermore, this review also explores the significance of synthetic data in addressing privacy concerns and augmenting data diversity and quality within the medical domain, in addition to emphasizing the role of inversion in the investigation of generative models and outlining an approach to replicate this process. We provide an overview of Large Language Models, such as GPTs and bidirectional encoder representations (BERTs), that focus on prominent representatives and discuss recent initiatives involving language-vision models in radiology, including innovative large language and vision assistant for biomedicine (LLaVa-Med), to illustrate their practical application. This comprehensive review offers insights into the wide-ranging applications of generative AI models in clinical research and emphasizes their transformative potential.
인공지능 기술이 발전함에 따라 경찰의 범죄수사 분야에서도 인공지능 기술을 적용하고자 하는 연구가 활발하다. 범죄수사의 결과물인 수사결과 보고서 작성에 있어 판결문은 중요한 데이터가 될 수 있다. 그러나 판결문은 공개된 데이터의 이미지화로 인해 정형화된 데이터의 확보가 까다롭고, 소수의 법조계 전문가가 아닌 일반인이 생성해내기 어려워 데이터 확보가 쉽지 않은 현실이다. 이에 본 연구에서는 생성적 사전학습 언어모델을 이용한 판결문 문장 데이터 생성을 제안하였다. 카카오의 KoGPT를 활용하여 실제 판결문장 일부를 제시한 결과 판결문과 유사한 형태의 문장을 생성한 것을 확인하였다. 향후 판결문 데이터를 활용하기 위한 인공지능 기술 기반 범죄수사 연구에 있어, 생성된 판결문 데이터를 활용할 수 있을 것으로 기대된다.
The Fourth Industrial Revolution and sensor technology have led to increased utilization of sensor data. In our modern society, data complexity is rising, and the extraction of valuable information has become crucial with the rapid changes in information technology (IT). Recurrent neural networks (RNN) and long short-term memory (LSTM) models have shown remarkable performance in natural language processing (NLP) and time series prediction. Consequently, there is a strong expectation that models excelling in NLP will also excel in time series prediction. However, current research on Transformer models for time series prediction remains limited. Traditional RNN and LSTM models have demonstrated superior performance compared to Transformers in big data analysis. Nevertheless, with continuous advancements in Transformer models, such as GPT-2 (Generative Pre-trained Transformer 2) and ProphetNet, they have gained attention in the field of time series prediction. This study aims to evaluate the classification performance and interval prediction of remaining useful life (RUL) using an advanced Transformer model. The performance of each model will be utilized to establish a health index (HI) for cutting blades, enabling real-time monitoring of machine health. The results are expected to provide valuable insights for machine monitoring, evaluation, and management, confirming the effectiveness of advanced Transformer models in time series analysis when applied in industrial settings.
최근에는 다양한 플랫폼 서비스가 인공지능을 활용하여 제공되고 있으며, 그 중 하나로 ChatGPT는 대량의 데이터를 자연어 처리하여 자가 학습 후 답변을 생성하는 역할을 수행하고 있다. ChatGPT는 IT 분야에서 소프트웨어 프로그래밍 분야를 포함하여 다양한 작업을 수행할 수 있는데, 특히 프로그램을 대표하는 C언어를 통해 간단한 프로그램을 생성하고 에러를 수정하는데 도움을 줄 수 있다. 이러한 능력을 토대로 C언어를 기반으로 만들어진 하드웨어 언어인 베릴로그 HDL도 ChatGPT에서 원활한 생성이 예상되지만, 베릴로그 HDL의 합성은 명령문들을 논리회로 구조 형태로 생성하는 것이기에 결과물들의 정상적인 실행 여부를 확인해야 한다. 본 논문에서는 용이한 실험을 위해 규모가 적은 논리회로들을 선택하여 ChatGPT에서 생성된 디지털회로와 인간이 만든 회로들의 결과를 확인하려 한다. 실험 환경은 Xilinx ISE 14.7로 모듈들을 모델링하였으며 xc3s1000 FPGA칩을 사용하여 구현하였다. 구현된 결과물을 FPGA의 사용 면적과 처리 시간을 각각 비교 분석함으로써 ChatGPT의 생성물과 베릴로그 HDL의 생성물의 성능을 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.