• Title/Summary/Keyword: GPS water vapor

Search Result 57, Processing Time 0.03 seconds

Accuracy Improvement of Precipitable Water Vapor Estimation by Precise GPS Analysis (GPS 관측데이터 정밀 해석을 통한 가강수량 추정 정확도 향상)

  • Song, Dong-Seob;Yun, Hong-Sic
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.27-30
    • /
    • 2007
  • The objective of this study is to improve an accuracy of PWV estimates using GPS in Korea. We determined a weighted mean temperature equation by a linear regression method based on 6 radiosonde meteorological observations, for a total 17,129 profiles, from 2003 to 2005. Weighted mean temperature, Tm, is a key parameter in the retrieval of atmospheric PWV from ground-based GPS measurements of zenith path delay. The accuracy of the GPS-derived PWV is proportional to the accuracy of Tm. And we applied the reduction of air Pressure to GPS station altitude. The reduction value of air pressure from mean sea level to GPS stations altitude is adopted a reverse sea level correction.

  • PDF

PROCESSING STRATEGY FOR NEAR REAL TIME GPS PRECIPITABLE WATER VAPOR RETRIEVAL (준 실시간 GPS 가강수량 생성을 위한 자료처리 전략)

  • Baek, Jeong-Ho;Lee, Jae-Won;Choi, Byung-Kyu;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.275-284
    • /
    • 2007
  • For the application to the numerical weather prediction (NWP) in active service, it is necessary to ensure that the GPS precipitable water vapor (PWV) data has less than one hour latency and three millimeter accuracy. The comparison and the verification between the daily products from GPS measurement by using the IGS final ephemeris and the conventional meteorological observation has been done in domestic researches. In case of using IGS final ephemeris, GPS measurements can be only post processed in daily basis in three weeks after the observation. Thus this method cannot be applied to any near real-time data processing. In this paper, a GPS data processing method to produce the PWV output with three mm accuracy and one hour latency for the data assimilation in NWP has been planned. For our new data processing strategy, IGS ultra-rapid ephemeris and the sliding window technique are applied. And the results from the new strategy has been verified. The GPS measurements during the first 10 days of January, April, July and October were processed. The results from the observations at Sokcho, where the GPS and radiosonde were collocated, were compared. As the results, a data processing strategy with 0.8 mm of mean bias and 1.7 mm of standard deviation in three minutes forty-three seconds has been established.

THE EFFECT OF SURFACE METEOROLOGICAL MEASUREMENTS ON PRECISION GPS HEIGHT DETERMINATION

  • Wang Chuan-Sheng;Liou Yuei-An;Wang Cheng-Gi
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.178-181
    • /
    • 2005
  • The positioning accuracy of the Global Positioning System (GPS) has been improved considerably during the past two decades. The main error sources such as ionospheric refraction, orbital uncertainty, antenna phase center variation, signal multipath, and tropospheric delay have been reduced substantially, if not eliminated. In this study, the GPS data collected by the GPS receivers that were established as continuously operating reference stations by International GNSS Service (IGS), Ministry of the Interior (MOl), Central Weather Bureau (CWB), and Industrial Technology Research Institute (ITRI) Of Taiwan are utilized to investigate the impact of atmospheric water vapor on GPS positioning determination. The surface meteorological measurements that were concurrently acquired by instruments co-located with the GPS receivers include temperature, pressure and humidity data. To obtain the influence of the GPS height on the proposed impact study. A hydrodynamic ocean tide model (GOTOO.2 model) and solid earth tide were used to improve the GPS height. The surface meteorological data (pressure, temperature and humidity) were introduced to the data processing with 24 troposphere parameters. The results from the studies associated with different GPS height were compared for the cases with and without a priori knowledge of surface meteorological measurements. The finding based on the measurements in 2003 is that the surface meteorological measurements have an impact on the GPS height. The associated daily maximum of the differences is 1.07 cm for the KDNM station. The impact is reduced due to smoothing when the average of the GPS height for the whole year is considered.

  • PDF

Determination of Slant Wet Delay using GPS (GPS를 이용한 시선방향 습윤지연 결정)

  • 하지현;박관동;박종욱
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.141-146
    • /
    • 2004
  • 본 연구에서는 Canada Southern Alberta Network의 6곳의 GPS(Global Positioning System) 상시관측소 데이터를 바탕으로 관측소와 각 GPS 위성간의 시선방향 습윤지연량을 결정하였다. 고정밀 GPS 데이터를 이용하여 천정방향 습윤지연량을 결정하고 이를 WVR(Water Vapor Radiometer)에서 측정한 천정방향 습윤지연량과 비교하였다. 그 결과 WVR의 천정방향 습윤지연량과 비교할 때 GPS로 관측한 천정방향 습윤지연량은 최대 1.39cm, 최소 0.99cm의 RMS 오차를 보였다. 또한 GPS로 관측한 시선방향 습윤지연량은 WVR과 비교할 때, PRN 25번 위성의 경우최대 17cm, 최소 0.05cm의 차이가 났다.

  • PDF

Development of Raman LIDAR System to Measure Vertical Water Vapor Profiles and Comparision of Raman LIDAR with GNSS and MWR Systems (수증기의 연직 분포 측정을 위한 라만 라이다 장치의 개발 및 GNSS, MWR 장비와 상호 비교연구)

  • Park, Sun-Ho;Kim, Duk-Hyeon;Kim, Yong-Gi;Yun, Mun-Sang;Cheong, Hai-Du
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.6
    • /
    • pp.283-290
    • /
    • 2011
  • A Raman LIDAR system has been designed and constructed for quantitative measurement of water vapor mixing ratio. The comparison with commercial microwave radiometer and global navigation satellite system(GNSS) was performed for the precipitable water vapor(PWV) profile and total PWV. The result shows that the total GNSS-PWV and LIDAR-PWV have good correlation with each other. But, there is small difference between the two methods because of maximum measurement height in LIDAR and the GNSS method. There are some significant differences between Raman and MWR when the water vapor concentration changes quickly near the boundary layer or at the edge of a cloud. Finally we have decided that MWR cannot detect spatial changes but LIDAR can measure spatial changes.

The Effect of Surface Meteorological Measurements on High-precision GPS Positing Determination

  • Wang, Chuan-Sheng;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.625-627
    • /
    • 2003
  • In this study, the Global Positioning System (GPS) data collected by the GPS receivers that were established as continuously operating reference stations by Central Weather Bureau and Industrial Technology Research Institute of Taiwan are utilized to investigate the impact of atmospheric water vapor on GPS positioning determination. The surface meteorological measurements that were concurrently acquired by instruments co-located with the GPS receivers include temperature, pressure and humidity data. To obtain the influence of the baseline length on the proposed impact study, four baselines are considered according to the locations of the permanent GPS sites. The length of the shorter baseline is about 66km, while the longer is about 118 km. The results from the studies associated with different baseline lengths and ellipsoid height were compared for the cases with and without a priori knowledge of surface meteorological measurements. The finding based on 66 days measurements is that the surface meteorological measurements have a significant impact on the positioning determination for the longer baseline case. The associated daily maximum differences are 1.1 cm and 1.4 cm for the baseline and ellipsoid height respectively. The corresponding biases are -8.1 mm in length and -7.3 mm in el lipsoid height.

  • PDF

PRECIPITABLE WATER VAPOR CONDITIONS FOR INFRARED OBSERVATIONS AT KOREAN ASTRONOMICAL OBSERVATORIES (국내 천문대 상공의 수증기량 조건과 적외선 관측)

  • Lee, Sung-Ho;Baek, Jeong-Ho;Moon, Bong-Kon;Jin, Ho;Cho, Jung-Ho;Cha, Sang-Mok;Cho, Seoung-Hyun;Park, Yung-Sik;Yuk, In-Soo;Nam, Uk-Won;Pak, Soo-Jong
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.339-348
    • /
    • 2007
  • KASINICS (Korea Astronomy and Space Science Institute Near Infrared Camera System) is equipped with a InSb array which can observe $1-5\;{\mu}m$ bands in near-infrared. The absorption and emission by telluric water vapor becomes serious in the bands longer than $3\;{\mu}m$. We measured PWV (precipitable Water Vapor) levels above Bohyusan Optical Astronomy Observatory and Sobaeksan Optical Astronomy Observatory from July 2006 to August 2007 using the GPS PWV measurement system of KASI. We found that monthly averaged PWVs are lower than the prediction using dew-point temperature and as low as above Kitt Peak from September to February.

An Analysis of the Least Observing-Session Duration of GPS for the Retrieval of Precipitable Water Vapor (GPS 가강수량 산출을 위한 최소 관측세션 지속시간에 대한 분석)

  • Kim, Yoo-Jun;Han, Sang-Ok;Kim, Ki-Hoon;Kim, Seon-Jeong;Kim, Geon-Tae;Kim, Byung-Gon
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.391-402
    • /
    • 2014
  • This study investigated the performances of precipitable water vapor (PWV) retrieval from the sets of ground global positioning system (GPS) signals, each of which had different length of observing-session duration, for the purpose of obtaining as short session duration as possible that is required at the least for appropriate retrieval of the PWV for meteorological usage. The shorter duration is highly desirable to make the most use of the GPS instrument on board the mobile observation vehicle making measurements place by place. First, using Bernese 5.0 software the PWV retrieval was conducted with the data sets of GPS signals archived continuously in 30 seconds interval during 2-month period of January and February, 2012 at Bukgangneung site. Each of the PWVs produced independently using different session durations was compared to that of radio-sonde launched at the same GPS location, a Bukgangneung site. Second, the same procedure was done using the data sets obtained from the mobile observation vehicle that was operating at Boseong area in Jeonnam province during Changma observation campaign in 2013, and the results were compared to that at Bukgangneung site. The results showed that as the observing-session duration increased the retrieval errors decreased with the dramatic change happening between 3 and 4 hours of the duration. On average, the root mean square error (RMSE) of the retrieved PWV was around 1 mm for the durations of greater than 4 hours. The results at both the Bukgangneung (fixed site) and Boseong (mobile vehicle) seemed to be fairly comparable with each other. From this study it is believed that at least 4 hours of observing-session duration is needed for the retrieval of PWV from the ground GPS for meteorological usage using Bernese 5.0 software.

Atmospheric Profiles from KOMPSAT-5 Radio Occultation : A Simulation Study

  • Lee, Woo-Kyoung;Cho, Sung-Ki;Jo, Jung-Hyun;Park, Jong-Uk;Yoon, Jae-Cheol;Lee, Jin-Ho;Chun, Yong-Sik
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.53-56
    • /
    • 2006
  • KOMPSAT (KOrea Multi-Purpose SATellite)-5 for the earth observation and scientific research is scheduled to launch in 2009. The second payload, AOPOD (Atmosphere Occultation and Precision Orbit Determination) system, consists of a space-borne dual frequency GPS receiver and a laser retro reflector. GPS radio occultations from AOPOD system can be used to generate profiles of refractivity, temperature, pressure and water vapor in the neutral atmosphere with a high vertical resolution. Also the radio occultation in the ionosphere provides an inexpensive tool of vertical electron density profile. Currently, many LEO missions with GPS radio occultation receivers are on orbit and more GPS occultation missions are planed to launch in the near future. In this paper, we simulated radio occultation measurements from KOMPSAT-5 and retrieved atmospheric profiles using the simulated data.

  • PDF

Effects of geomagnetic storms on the middle atmosphere and troposphere by ground-based GPS observations

  • Jin, Shuang-Gen;Park, Jong-Uk;Park, Pil-Ho;Cho, Jung-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.47-51
    • /
    • 2006
  • Among Solar activities' events, the geomagnetic storms are believed to cause the largest atmospheric effects. The geomagnetic storm is a complex process of solar wind/magnetospheric origin. It is well known to affect severely on the ionosphere. However, this effect of this complex process will maybe act at various altitudes in the atmosphere, even including the lower layer and the neutral middle atmosphere, particularly the stratosphere. Nowadays, the GPS-derived ZTD (zenith tropospheric delay) can be transformed into the precipitable water vapor (PWV) through a function relation, and further has been widely used in meteorology, especially in improving the precision of Numerical Weather Prediction (NWP) models. However, such geomagnetic effects on the atmosphere are ignored in GPS meteorology applications. In this paper, we will investigate the geomagnetic storms' effects on the middle atmosphere and troposphere (0-100km) by GPS observations and other data. It has found that geomagnetic storms' effect on the atmosphere also appears in the troposphere, but the mechanism to interpret correlations in the troposphere need be further studied.

  • PDF