• Title/Summary/Keyword: GPS time

Search Result 1,604, Processing Time 0.026 seconds

On the Crustal Deformation Study Using Permanent GPS Station in Korea Peninsula

  • YUN, Hong-Sic;CHO, Jae-Myoung
    • Korean Journal of Geomatics
    • /
    • v.3 no.2
    • /
    • pp.141-148
    • /
    • 2004
  • This paper deals with the characteristics of strain pattern by using permanent GPS stations in Korea in terms of seismic activity and tectonics. Fourteen GPS stations involved in precise baseline vector solution and horizontal strain components were calculated using the differences of mean baseline from ten deily solutions during the time span of three years. The mean rate of maximum shear strain if 0.12 $\mu$/yr. The mean direction of principal axes of the compression is about $85^{\circ}$ N.

  • PDF

Development of L1 C/A Code GPS receiver using chipset (Chip Set을 이용한 L1 C/A Code GPS 수신기 개발)

  • 심우성;박상현;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1376-1379
    • /
    • 1996
  • In this paper a GPS receiver is developed using commercial chipsets. GP2010 RF front end and GP2021 Multi-channel correlator of GEC PLESSY are adapted in designing the receiver hardware. MC 68340 is used for controlling the correlator GP2021 and implementing the navigation processing. Also presented are some test results of the developed receiver whose software has an interrupt driven structure rather than common real-time kernel based structure.

  • PDF

A Study on the Design and Implementation of a Position Tracking System using Acceleration-Gyro Sensor Fusion

  • Jin-Gu, Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.49-54
    • /
    • 2023
  • The Global Positioning System (GPS) was developed for military purposes and developed as it is today by opening civilian signals (GPS L1 frequency C/A signals). The current satellite orbits the earth about twice a day to measure the position, and receives more than 3 satellite signals (initially, 4 to calculate even the time error). The three-dimensional position of the ground receiver is determined using the data from the radio wave departure time to the radio wave Time of Arrival(TOA) of the received satellite signal through trilateration. In the case of navigation using GPS in recent years, a location error of 5 to 10 m usually occurs, and quite a lot of areas, such as apartments, indoors, tunnels, factory areas, and mountainous areas, exist as blind spots or neutralized areas outside the error range of GPS. Therefore, in order to acquire one's own location information in an area where GPS satellite signal reception is impossible, another method should be proposed. In this study, IMU(Inertial Measurement Unit) combined with an acceleration and gyro sensor and a geomagnetic sensor were used to design a system to enable location recognition even in terrain where GPS signal reception is impossible. A method to track the current position by calculating the instantaneous velocity value using a 9-DOF IMU and a geomagnetic sensor was studied, and its feasibility was verified through production and experimentation.

Improvement of GPS Relative Positioning Accuracy by Using Crustal Deformation Model in the Korean Peninsula (GPS상대측위 정확도 향상을 위한 한반도 지각변동모델 개발)

  • Cho, Jae-Myoung;Yun, Hong-Sik;Lee, Mi-Ran
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.237-247
    • /
    • 2011
  • As of 2011, 72 Permanent GPS Stations are installed to control DGPS reference points by the National Geographic Information Institute in South Korea. As the center of the Earth's mass continues to move, the coordinates of the permanent GPS stations become inconsistent over time. Thus, a reference frame using a set of coordinates and their velocities of a global network of stations at a specific period has been used to solve the inconsistency. However, the relative movement of the permanent GPS stations can lower the accuracy of GPS relative positioning. In this research, we first analyzed the data collected daily during the past 30 months at the 40 permanent GPS stations within South Korea and the 5 IGS permanent GPS stations around the Korean Peninsula using a global network adjustment. We then calculated the absolute and relative amount of movement of the GPS permanent stations. We also identified the optimum renewal period of the permanent GPS stations considering the accuracy of relative GPS surveying. Finally, we developed a Korean a Korean crustal movement model that can be used to improvement of accuracy.

A Study on Multi-Bit Processing Scheme of GPS Receiver for Fail-Safe Seaway (Fail-Safe Seaway를 위한 GPS 수신기의 다중비트처리기법 연구)

  • Cho Deuk-Jae;Oh Se-Woong;Suh Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.10 s.106
    • /
    • pp.877-882
    • /
    • 2005
  • It is necessary that Fail-Safe Seaway technology providing a continuous navigation solution though fault of navigation system is occurred in sea. This paper focus on signal processing of GPS receiver, one of receivers using the software radio technology to implement a integrated radio navigation system including satellite-based and ground-based navigation systems. It is difficult to implement the software GPS receivers using a commercial processor because of the heavy computational burden for processing the GPS signals in real time. This paper proposes an efficient multi-bit GPS signal processing scheme to reduce the computational burden for processing the GPS signals in the software GPS receiver. The proposed scheme uses a compression concept of the multi-bit replica signals and patterned look-up table method to generate the correlation value between the GPS signals and the replica signals.

Development of Network-Based Online GPS Baseline Processing System (네트워크 기반 온라인 GPS 기선해석 시스템 개발)

  • Kim, Su-Kyung;Bae, Tae-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.2
    • /
    • pp.138-146
    • /
    • 2011
  • With the increased use of GPS in the field of various applications including surveying, the request for fast and precise positional information has increased. Several countries such as USA, Canada, and Australia have already been operating Internet-based automatic GPS data analysis system using e-mail and FTP. Expanding GPS market, it is necessary to establish automatic GPS baseline processing system that is accessible via Internet. The system developed in this study is operating on the web, and it allows the users to access easily regardless of time and place. The main processing engines are Bernese V5.0 and PAGES. They process user data with three GPS CORS(Continuously Operating Reference Station), and then send the report to the users through e-mail. This system allows users to process high accurate GPS data easily. It is expected that this system will be used for various GPS applications such as monitoring large-scale structures and providing spatial information services in private sector.

A Study on Multi-Bit Processing Scheme of GPS Receiver for Fail-Safe Seaway (Fail-Safe Seaway를 위한 GPS 수신기의 다중비트처리기법 연구)

  • Cho Deuk-Jae;Oh Se-Woong;Suh Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.37-42
    • /
    • 2005
  • It is necessary that Fail-Safe Seaway technology providing a continuous navigation solution though fault of navigation system is occurred in sea. This paper focus on signal processing of GPS receiver, one of receivers using the software radio technology to implement a integrated radio navigation system including satellite-based and ground-based navigation systems. It is difficult to implement the software GPS receivers using a commercial processor bemuse of the heavy computational burden for processing the GPS signals in real time. This paper proposes an efficient multi-bit GPS signal processing scheme to reduce the computational burden for processing the GPS signals in the software GPS receiver. The proposed scheme uses a compression concept of the multi-bit replica signals and patterned look-up table method to generate the correlation value between the GPS signals and the replica signals.

  • PDF

A Time Synchronization Scheme for Vision/IMU/OBD by GPS (GPS를 활용한 Vision/IMU/OBD 시각동기화 기법)

  • Lim, JoonHoo;Choi, Kwang Ho;Yoo, Won Jae;Kim, La Woo;Lee, Yu Dam;Lee, Hyung Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.251-257
    • /
    • 2017
  • Recently, hybrid positioning system combining GPS, vision sensor, and inertial sensor has drawn many attentions to estimate accurate vehicle positions. Since accurate multi-sensor fusion requires efficient time synchronization, this paper proposes an efficient method to obtain time synchronized measurements of vision sensor, inertial sensor, and OBD device based on GPS time information. In the proposed method, the time and position information is obtained by the GPS receiver, the attitude information is obtained by the inertial sensor, and the speed information is obtained by the OBD device. The obtained time, position, speed, and attitude information is converted to the color information. The color information is inserted to several corner pixels of the corresponding image frame. An experiment was performed with real measurements to evaluate the feasibility of the proposed method.

The Study on the Tide Correction of Bathymetry based on the DGPS Surveying (DGPS에 의한 해양측량 조위보정에 관한연구)

  • 조규전;차득기;강봉서
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.3
    • /
    • pp.295-303
    • /
    • 2000
  • The purpose of this research is to enhance efficiency and tide measurement of the bathymetry survey based on the DGPS techniques which is becoming popular today due to a lot of benefits using the GPS. And according to the result of this research, choice and interpolation were possible with the most optimum method according to the various mathematical regressive equations as linear, parabolic, polynomic, reciprocal, hyperbolic, logarithmic and Gaussian functions. And the height of ground surface is easily calculated by 2D+1D transformation of coordinate of WGS84 in Cm-level based on the real time, even though the GPS time and tide were used to be synchronized through step-wised processing before. And because of the synchronization of time, the real time DGPS can cope with the loss of local current and changes of the tide.

  • PDF

Precision Improvement of GPS Height Time Series by Correcting for Atmospheric Pressure Loading Displacements (대기압하중에 의한 지각변위 보정을 통한 GPS 수직좌표 시계열 정밀도 향상)

  • Kim, Kyeong-Hui;Park, Kwan-Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.599-605
    • /
    • 2009
  • Changes of atmospheric pressures cause short- and long-term crustal deformations and thus become error sources in the site positions estimated from space geodesy equipments. In this study, we computed daily displacements due to the atmospheric pressure loading (ATML) at the 14 permanent GPS sites operated by National Geographic Information Institute. And the 10-year GPS data collected at those stations were processed to create a continuous time series of the height estimate. Then, we corrected for the ATML from the GPS height time series to see if the correction changes the site velocity and improves the precision of the time series. While the precision improved by about 4% on average, the velocity change was not significant at all. We also investigated the overall characteristics of the ATML in the southern Korean peninsula by computing the ATML effects at the inland grid points with a $0.5^{\circ}{\times}0.5^{\circ}$ spatial resolution. We found that ATML displacements show annual signals and those signals can be fitted with sinusoidal functions. The amplitudes were in the range of 3-4 mm, and they were higher at higher latitudes and lower at the costal area.