• Title/Summary/Keyword: GPS signal

Search Result 764, Processing Time 0.034 seconds

Comparison on Various Acquisition Method for GPS L1 C/A (GPS L1 C/A 기반의 신호 획득부 구현 및 비교)

  • Park, Jiwoon;Yoo, Hoyoung
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.649-653
    • /
    • 2020
  • GPS is a representative satellite navigation system that provides users with accurate location and time information. GPS L1 C / A is opened for civilian and thus utilized in various fields. When the satellite signal reaches the receiver, signal acquisition unit of the digital signal processing hardware searches and acquires the signal among visible satellites. The signal acquisition unit has different implementation methods depending on the signal searching method, such as serial search acquisition, parallel frequency search, parallel code phase search. In this paper, we compare and analyze the three representative acquisition hardwares using live GPS L1 C/A signals. According to the comparison, the parallel code phase search acquisition outperforms the other methods due to reduction of the number of the searchings and a high resolution.

Design of GPS L1-CA/Galileo Dual Mode Receiver (GPS L1-CA/Galileo 겸용 수신기의 설계)

  • Kim, Chan-Mo;Im, Sung-Hyuk;Jee, Gyu-In;Cho, Yong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • A GNSS(Global Navigation Satellite System) using GPS provides us with very useful information concerning the positioning of users in many sectors such as transportation, social services, the justice system and customs services, public works, search and rescue systems and leisure. A GNSS using the Galileo satellite is due to work in 2008 and expected to be used in various fields such as aviation, marine transportation, land surveying, resources development precise agriculture, telemetics, and so on. In this paper, we discuss the implementation and testing of a combined GPS/Galileo receiver which we named KSTAR V1.0. Each tracking module of GPS/Galileo dual mode correlator has the five track arms which consist of Very Early code, Early code, Prompt code, late code, and Very late code. Each of 24 tracking modules can be assigned to GPS and/or Galileo signal by changing mode selection register. The basic correlator integration dump period is set to 1ms for GPS C/A code and fast Galileo signal tracking. The performance of the developed combined GPS/Galileo receiver was tested and evaluated using the IF (Intermediated Frequency)-level GPS/Galileo signal generator.

Performance Analysis of Linear Array Antenna for Anti-jamming GPS Systems (항재밍 GPS 시스템을 위한 선형 어레이 안테나 성능 분석)

  • Kim, Kiyun
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.46-51
    • /
    • 2015
  • In this paper, I design a linear array antenna simulator for anti-jamming GPS systems and perform various performance analysis by simulation. First, I generate simulated transmission signals through the analysis of GPS satellite signal structure, and analyze SNR(Signal to Noise power Ratio) performance of linear array antenna according to number of arrays under noise environments. In addition, I analyze the performance of the anti-jamming beam pattern using MMSE(Minimum Mean Square Error) signal processing method, and also analyze the anti-jamming performance considering antenna calibration problem when there are different delays between arrays.

Analysis of GPS Software Receiver (GPS Software 수신기의 분석)

  • Zhang, Wei;Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.229-236
    • /
    • 2018
  • In this paper, we see the acquisition and tracking of L1 C/A signal on GPS receiver, do the research on GPS signal capture principle's foundation, and do the simulation of the GPS signals capture process for it's realizing and analyzing by Matlab. The simulation result, we can confirm this method's accuracy and the feasibility, and see that a satellite receiving ability play an important role in the efficiency of receiver.

Performance analysis of DOA estimation and beamforming in 3-dimensional array antenna for GPS receiver (GPS 수신기를 위한 3 차원 배열 안테나의 도래각 추정 및 빔 형성 성능 분석)

  • Lee, Chong-Hyun;Kim, Suk-Joong;Lim, Seung-Gag
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.4
    • /
    • pp.88-94
    • /
    • 2007
  • This paper deals with the performance analysis of 3-dimensional array antenna by DOA estimation and beamforming in GPS receiver for performance improvement by interference elimination. The array antenna in GPS receiver can improve the system performance by estimating DOA of arriving signal direction, making the main beam for desired direction and elimate the jammer signal by nulling while keeping the GPS signal direction by spatial filtering. In this paper, we propose five types of 3-dimensional array antenna and analyze the estimation error via MUSIC algorithm which is used for the estimation of DOA of arrived signal and beamforming performance. In analyzing DOA performance, we measure DOA estimation error, while in analyzing beamformig performance, we measure BER. In beamforming performance analyzing, we use various jammer power and the existence of GPS signal and angle spread. By performing through the computer simulation, Curved (B) 7-element antenna in proposed 3-dimensional array antenna exhibits the superior performance in the DOA estimation, estimation error, BER characteristic and angle spread compared to the rest four array antenna types.

A Spoofing Detection Scheme Based on Elevation Masked-Relative Received Power in GPS Receivers using Multi-band Array Antenna

  • Junwoo Jung;Hyunhee Won;Sungyeol Park;Haengik Kang;Seungbok Kwon;Byeongjin Yu;Seungwoo Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.101-111
    • /
    • 2023
  • Many spoofing detection studies have been conducted to cope with the most difficult types of deception among various disturbances of GPS, such as jamming, spoofing, and meaconing. In this paper, we propose a spoofing detection scheme based on elevation masked-relative received power between GPS L1 and L2 signals in a system using a multi-band array antenna. The proposed scheme focuses on enabling spoofing to be normally detected and minimizes the possibility of false detection in an environment where false alarms may occur due to pattern distortion among elements of an array antenna. The pattern distortion weakens the GPS signal strength at low elevation. It becomes confusing to detect a spoofing signal based on the relative power difference between GPS L1 and L2, especially when GPS L2 has weak signal strength. We propose design parameters for the relative power threshold including beamforming gain, the minimum received power difference between L1 and L2, and the patch antenna gain difference between L1 and L2. In addition, in order to eliminate the weak signal strength of GPS L2 in the spoofing detection process, we propose a rotation matrix that sets the elevation mask based on platform coordinates. Array antennas generally do not have high usefulness in commercial areas where receivers are operated alone, but are considered essential in military areas where GPS receivers are used together with signal processing for beamforming in the direction of GPS satellites. Through laboratory and live sky tests using the device under test, the proposed scheme with an elevation mask detects spoofing signals well and reduces the probability of false detection relative to that without the elevation mask.

Simulation of GNSS Spoofing Detection Method Using Encrypted Ranging Signal (암호화 신호원을 이용한 위성항법 기만 검출기법 모의)

  • So, Hyoungmin
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.394-400
    • /
    • 2016
  • It is well known that the encrypted ranging signal, such as GPS P(Y) code, is immune to spoofing attack. However, in order for users to use the signal, there needs permission from the operator. And also there are many restrictions for use because of security issues. In this paper, a ground reference station equipped with high-gain directional antenna and a user receiver were simulated. In the reference station, the encrypted code can be demodulated from the high-gain signal. And then the code can be used to detect spoofing attack in the user receiver. This paper proposes the spoofing detection method using the encrypted signal and deals with simulation results.

KOMPSAT-2에 사용되는 GPS Receiver 성능 시험

  • 조승원;권기호;최종연;윤영수
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.107-107
    • /
    • 2003
  • GPS Receiver는 위성에 위치 정보와 시간 정보등을 제공하고 navigation을 관리하며 이에 관련된 signal을 processing하는 역할을 한다. 2005년에 발사 예정인 KOMPSAT-2 위성에는 Alcatel에서 제작된 Topstar 3000이 사용된다. Topstar 3000은 RF 부분과 digital 처리부분으로 구성된 GPS core부분과 MLD-STD_1553, DC-DC converter, 그리고 Ovened-controlled Oscillator(OCXO)부분으로 구성되는 option module 부분으로 구성되어 있다. 본 논문에서는 GPS Signal Simulator로 KOMPSAT-2의 실제 궤도를 구현해서 Sun-Point Mode와 Earth-Point Mode 등 여러가지 Mode 에서 GPS Receiver의 시간, 위치, 속도 정보의 정확성에 대한 성능이 분석된다.

  • PDF

Extending GPS Service Indoors by use of Synchronized Pseudolites

  • Lim, You-Chol;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.33.3-33
    • /
    • 2002
  • Pseudolite (PL) is a kind of signal generator, which transmits GPS-like signal at the ground. However our own made PL is different from a GPS satellite in clock accuracy. GPS satellites are synchronized by use of high precision atomic clocks. But because our PLs use low cost temperature controlled oscillators (TCXO), so it is very difficult to synchronize them. Hence, we should install reference station and use Differential GPS (DGPS) algorithm to calculate user position. By use of this method, we already developed indoor navigation system a few years ago. We named it as 'Asynchronous Pseudolite Indoor Navigation System'. However, this system requires that sampling times of all the receivers...

  • PDF

Design of Efficient Frequency Discriminator for Weak Signal Tracking (미약신호 추적을 위한 효율적인 주파수 변별기 설계)

  • Im, Sung-Hyuck;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.649-654
    • /
    • 2009
  • In this paper, an frequency tracking algorithm for weak signal tracking is proposed. The proposed frequency tracking algorithm uses a FMS (Fast Minus Slow) discriminator for frequency error estimation. This frequency tracking algorithm shows good frequency estimation performance under weak signal condition and is a computationally efficient for embedded software GNSS receiver. The software GNSS receiver implementing the proposed weak signal tracking algorithms could track GPS signal down to - 159dBm signal strength in the signal generator test and real GPS signal under dense urban condition.