Journal of Satellite, Information and Communications
/
v.8
no.1
/
pp.40-44
/
2013
In this paper, we describe on the position error of GBAS. In reality, there are many sources which make errors into the calculation of receiver position. It is well known that the DOP of GBAS is an important position error source and is dependent on the numbers and positions of the transmitters. Here, we develop an algorism to calculate the DOP of the GNSS with 2-line transmitters into Korean area. The result is useful to predict the DOP of the positions where transmitters and receivers are located.
Subhan, Fazli;Ahmed, Shakeel;Haider, Sajjad;Saleem, Sajid;Khan, Asfandyar;Ahmed, Salman;Numan, Muhammad
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.9
/
pp.4408-4428
/
2019
Due to the rapid advancement in smart phones, numerous new specifications are developed for variety of applications ranging from health monitoring to navigations and tracking. The word indoor navigation means location identification, however, where GPS signals are not available, accurate indoor localization is a challenging task due to variation in the received signals which directly affect distance estimation process. This paper proposes a hybrid approach which integrates fingerprinting based K-Nearest Neighbors (K-NN) and lateration based MinMax position estimation technique. The novel idea behind this hybrid approach is to use Euclidian distance formulation for distance estimates instead of indoor radio channel modeling which is used to convert the received signal to distance estimates. Due to unpredictable behavior of the received signal, modeling indoor environment for distance estimates is a challenging task which ultimately results in distance estimation error and hence affects position estimation process. Our proposed idea is indoor position estimation technique using Bluetooth enabled smart phones which is independent of the radio channels. Experimental results conclude that, our proposed hybrid approach performs better in terms of mean error compared to Trilateration, MinMax, K-NN, and existing Hybrid approach.
Journal of Institute of Control, Robotics and Systems
/
v.14
no.8
/
pp.800-808
/
2008
This paper presents a localization algorithm of the outdoor wheeled mobile robot using the sensor fusion method based on indirect Kalman filter(IKF). The wheeled mobile robot considered with in this paper is approximated to the two wheeled mobile robot. The mobile robot has the IMU and encoder sensor for inertia positioning system and GPS. Because the IMU and encoder sensor have bias errors, divergence of the estimated position from the measured data can occur when the mobile robot moves for a long time. Because of many natural and artificial conditions (i.e. atmosphere or GPS body itself), GPS has the maximum error about $10{\sim}20m$ when the mobile robot moves for a short time. Thus, the fusion algorithm of IMU, encoder sensor and GPS is needed. For the sensor fusion algorithm, we use IKF that estimates the errors of the position of the mobile robot. IKF proposed in this paper can be used other autonomous agents (i.e. UAV, UGV) because IKF in this paper use the position errors of the mobile robot. We can show the stability of the proposed sensor fusion method, using the fact that the covariance of error state of the IKF is bounded. To evaluate the performance of proposed algorithm, simulation and experimental results of IKF for the position(x-axis position, y-axis position, and yaw angle) of the outdoor wheeled mobile robot are presented.
The position of autonomous driving vehicle is basically acquired through the global positioning system (GPS). However, GPS signals cannot be received in tunnels. Due to this limitation, localization of autonomous driving vehicles can be made through sensors mounted on them. In particular, a 3D Light Detection and Ranging (LIDAR) system is used for longitudinal position error correction. Few feature points and structures that can be used for localization of vehicles are available in tunnels. Since lanes in the road are normally marked by solid line, it cannot be used to recognize a longitudinal position. In addition, only a small number of structures that are separated from the tunnel walls such as sign boards or jet fans are available. Thus, it is necessary to extract usable information from tunnels to recognize a longitudinal position. In this paper, fire hydrants and evacuation guide lights attached at both sides of tunnel walls were used to recognize a longitudinal position. These structures have highly distinctive reflectivity from the surrounding walls, which can be distinguished using LIDAR reflectivity data. Furthermore, reflectivity information of tunnel walls was fused with the road surface reflectivity map to generate a synthetic reflectivity map. When the synthetic reflectivity map was used, localization of vehicles was able through correlation matching with the local maps generated from the current LIDAR data. The experiments were conducted at an expressway including Maseong Tunnel (approximately 1.5 km long). The experiment results showed that the root mean square (RMS) position errors in lateral and longitudinal directions were 0.19 m and 0.35 m, respectively, exhibiting precise localization accuracy.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.45
no.5
/
pp.38-47
/
2008
The most commonly used location recognition system is the GPS-based approach. However, the GPS is inefficient for an indoor or urban area where high buildings shield the satellite signals. To overcome this problem, this paper propose the indoor positioning method using wavelet and neural network. The basic idea of proposed method is estimated the location using the received signal strength from wireless APs installed in the indoor environment. Because of the received signal strength of wireless radio signal is fluctuated by the environment factors, a feature that is strength of signal noise and error and express the time and frequency domain is need. Therefore, this paper is used the wavelet coefficient as the feature. And the neural network is used for estimate the location. The experiment results indicate 94.6% an location recognition rate.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.10
/
pp.609-617
/
2016
In general, Personal Navigation Systems (PNSs) can be defined systems to acquire pedestrian positional information. GPS is an example of PNS. However, GPS can only be used where the GPS signal can be received. Pedestrian Dead Reckoning (PDR) can estimate the positional information of pedestrians using Inertial Measurement Unit (IMU). Therefore, PDR can be used for GPS-disabled areas. This paper proposes a PDR scheme considering various movement types over GPS-disabled areas as combat environments. We propose a movement distance estimation scheme and movement direction estimation scheme as pedestrian's various movement types such as walking, running and crawling using IMU. Also, we propose a fusion algorithm between GPS and PDR to mitigate the lack of accuracy of positional information at the entrance to the building. The proposed algorithm has been tested in a real test bed. In the experimental results, the proposed algorithms exhibited an average position error distance of 5.64m and position error rate in goal point of 3.41% as a pedestrian traveled 0.6km.
Latency occurs in RTK, where the measured position actually outputs past position when compared to the measured time. This latency has an adverse effect on the navigation accuracy. In the present study, a system that estimates the latency of RTK and compensates the position error induced by the latency was implemented. To estimate the latency, the speed obtained from an odometer and the speed calculated from the position change of RTK were used. The latency was estimated with a modified correlator where the speed from odometer is shifted by a sample until to find best fit with speed from RTK. To compensate the position error induced by the latency, the current position was calculated from the speed and heading of RTK. To evaluate the performance of the implemented method, the data obtained from an actual vehicle was applied to the implemented system. The results of the experiment showed that the latency could be estimated with an error of less than 12 ms. The minimum data acquisition time for the stable estimation of the latency was up to 55 seconds. In addition, when the position was compensated based on the estimated latency, the position error decreased by at least 53.6% compared with that before the compensation.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.32
no.2
/
pp.163-171
/
2014
Based on the GPS/IMU integration, the car navigation has unstable conditions as well as drastically reduces accuracies in urban region. Nowadays, many cars mounted the camera to record driving states. If the ground coordinates of street furniture are known, the position and attitude of camera can be determined through SPR(Single Photo Resection). Therefore, an estimated position and attitude from SPR can be applied measurements in Kalman filter for updating errors of navigation solutions from GPS/IMU integration. In this study, the GPS/IMU/SPR integration algorithm was developed in loosely coupled modes through extended Kalman filters. Also, in order to analyze performances of GPS/IMU/SPR, simulation tests were conducted in GPS signal reception environments and the GCPs (Ground Control Points) distributions. In fact, the position and attitude gathered from GPS/IMU/SPR integration are more precise than the position and attitude from GPS/IMU integration. When IPs (image points), corresponded to GCPs, were concentrated in the center of image, the position error in the optical axis respectively increased. To understand effects from SPR, we plan to carry additional test on the magnitude of GCP, IP and initial exterior orientation errors.
The Journal of Korean Institute of Communications and Information Sciences
/
v.42
no.2
/
pp.424-431
/
2017
These days land vehicle navigation system is a subject of great interest. The GNSS(Global Navigation Satellite System) is the most popular technology for out door positioning. However, The GNSS is incapable of providing high accuracy and reliable positioning. For that reason, we applied Network-RTK in vehicle to improve the accuracy of GNSS performance. In this network-RTK mode, the GNSS error are significantly decreased. In this paper, we explain ntrip client program for network-RTK mode and show the result of experiments in various environments.
Choi, Yun Sub;Lee, Sun Yong;Park, Chansik;Ahn, Byoung Sun;Won, Hyun Hee;Lee, Sang Jeong
Journal of Positioning, Navigation, and Timing
/
v.5
no.3
/
pp.131-136
/
2016
The present paper shows that beamforming algorithm such as Minimum Variance Distortionless Response (MVDR) based on array antenna signal processing can have not only anti-jamming but also anti-spoofing characteristics. A beam pattern due to the beamforming algorithm strengthens received signal power as it is formed in the incident direction of desired signal. During the process, the effect of unnecessary signals such as spoofing signals can be reduced because the beam pattern reduces received signal power in the incident directions excluding the beam pattern-directed direction. In order to analyze the anti-spoofing effect due to the beamforming algorithm, a software-based simulation environment was configured. An arbitrary error was applied between incident direction of Global Positioning System (GPS) satellite signal and steering vector direction of the beamforming algorithm to analyze the received signal power and required conditions were provided to see the anti-spoofing effect due to the beamforming algorithm. The used antenna was 7-element planar circular array and beam patterns were formed through the MVDR algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.