• Title/Summary/Keyword: GPS phase measurement

Search Result 83, Processing Time 0.029 seconds

Performance Analysis of Least-Squares Estimation and LAMBDA Method for GPS Precise Positioning using Carrier Phase (GPS 반송파 위상을 이용한 정밀 측위의 최소자승법과 LAMBDA기법의 성능분석)

  • 박헌준;원종훈;고선준;이자성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.146-146
    • /
    • 2000
  • This paper presents field test results of the GPS precise positioning using carrier phase observable. The Least-squares AMBiguity Decorrelation Adjustment(LAMBDA) method is implemented to resolve integer ambiguity problem for two epoch Ll carrier phase measurement data. Field test results show that the GPS precise positioning of cm-level accuracy is obtainable with conventional low cost, single frequency C/A code GPS receivers.

  • PDF

A Study on the accuracy of Rangefinder between vessels by use of GPS (GPS를 이용한 선간거리계의 정확도에 관한 연구)

  • 김광홍
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.215-226
    • /
    • 1999
  • The experimented rangefinder consist of sets of V/A-Code GPS and sets of L1 C/A-code & carrier phase receivers connected by two spread spectrum radio modems in order to measure relative range and bearing between two ship antennas by real time, comparing and analyzing accuracy of both GPS receivers at the fix point on the land by means of executing zero baseline test by C/A code and by carrier phase as well as measuring distance range 5m, 10m, 15m between each other receivers. The results from the measurement of relative range and bearing are as follows as ;1. According to the results from zero baseline test, the average error by C/A-code receiver is less than 0.1m, which proves theories from published books but when each GPS receivers track different satellites, the range accuracy error becomes up to 100m by means of S/A. Because of this sudden wide range error, rangefinder is not appropriate at relative range measurement without additional modification of the algorism of the GPS receiver itself.2. According to relative range measurement by Carrier Phase and zero baseline test at static condition, the range error is less than 3.5cm in case that it passes more than 5 minutes after GPS sets can track simultaneously more than 6 satellites. Its main reason is understood that the phase center of antenna is bigger than geodetic antenna.3. When range measurement of two receivers from 5m, to 10m to 15m, the each range error is 0.340m, 0.190m, 0.011m and each standard variation is 0.0973m, 0.0884m, 0.0790m. The range error and standard variation are in inverse proportion to distance between two receivers. 4. L1 Carrier Phase GPS generally needs 5 minutes to fix and during this ambiguity search, the relative range and bearing angle is shown to be various.

  • PDF

GPS phase measurement cycle-slip detection based on a new wavelet function

  • Zuoya, Zheng;Xiushan, Lu;Xinzhou, Wang;Chuanfa, Chen
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.91-96
    • /
    • 2006
  • Presently, cycle-slip detection is done between adjacent two points in many cycle-slip methods. Inherently, it is simple wavelet analysis. A new idea is put forward that the number of difference point can adjust by a parameter factor; we study this method to smooth raw data and detect cycle-slip with wavelet analysis. Taking CHAMP satellite data for example, we get some significant conclusions. It is showed that it is valid to detect cycle-slip in GPS phase measurement based on this wavelet function, and it is helpful to improve the precision of GPS data pre-processing and positioning.

  • PDF

Study on SDINS/GPS Kalman Filter using GPS carrier phase rate measurements (GPS 반송파 위상변화율을 이용한 SDINS/GPS 복합항법 필터 구성)

  • Park, Jun-Gu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.42-46
    • /
    • 2006
  • As an application of SDINS/GPS integration for its synergistic results, the SDINS alignments utilizing GPS carrier phase rate measurements. A measurement model of GPS carrier phase rate is derived in order to be used with SDINS alignment process. For in-flight alignment, the performance of the suggested SDINS/GPS integration method is analyzed using the covariance analysis and its results are confirmed by those of van test. Consequently, it is shown that all states of the SDINS integrated system by utilizing GPS carrier phase rate measurements can be estimated more efficiently than a general SDINS/GPS during in-flight alignment.

GPS/SDINS integration model using GPS carrier phase rate measurements (GPS 반송파 위상변화율을 이용한 GPS/SDINS 결합모델)

  • Park Joon-Goo
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • As an application of the GPS/SDINS integration for its synergistic results, the alignments of the SDINS utilizing GPS carrier phase rate measurements is introduced. A measurement model of GPS carrier phase rate, which does not require integer ambiguity determination process, is newly derived in order to be adopted with the SDINS in-flight alignment process. For in-flight alignment, the performance of the GPS/SDINS integration method suggested in this paper is analyzed using the covariance analysis.

  • PDF

The Design and Test/valuation of GPS Translator Processing System (GPS 중계기 후처리 장비(TPS) 개발 및 시험평가)

  • 강설묵;이상정
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.49-58
    • /
    • 2003
  • Compared with generic GPS receiver, post-processing software GPS receiver has many advantages for high dynamic vehicle tracking. It has the advantage of the application of various tracking algorithms and aiding schemes. The post-processing system observes the carrier phase measurement data from the recorded GPS signals, detects and isolates the cycle slip. The observed carrier phase data and the raw data of the reference station are processed by carrier phase DGPS scheme. And the integer ambiguity resolution algorithm is used for resolving single frequency carrier phase ambiguity. The results of static and real flight test are presented and show that the proposed GPS translator processing system satisfies submeter accuracy.

Study on Observabi1ity Entrancement of SDINS in-flight using GPS Carrier Phase Measurements (GPS 반송파위상 정보를 이용한 SDINS의 운항중 정렬에 대한 가관측성 향상기법 연구)

  • 박준구;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.54-54
    • /
    • 2000
  • For its synergistic relationship, an integrated SDINS/GPS system has been adopted in many navigation areas. As an application of SDINS/GPS integration, the in-flight alignment process of a SDINS utilizing GPS carrier phase measurements is introduced and analyzed via an observability analysis using nul1 space method. A measurement model of double-differenced GPS carrier phase measurements is newly derived in order to be used with a SDINS error model. Also, conditions for determining the complete observability of a SDINS/GPS system are suggested and proved. Consequently, it is shown that the system is not completely observable in case of one basel me. With one baseline aligned with y-axis of body frame, pitch error and x-axis accelerometer bias are unobservable states. Also shown is that al1 states are completely observable when sequential maneuver is performed. Above results are confirmed by a covariance analysis.

  • PDF

Detection Probability Improvement of Bias Error of GPS Carrier Measurement using Baseline Constraint (기저선 제한조건을 이용한 GPS 반송파 바이어스 오차의 검출확률 향상)

  • Lee, Eun-Sung;Chun, Se-Bum;Lee, Young-Jea;Kang, Tea-Sam;Jee, Gyu-In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.88-93
    • /
    • 2004
  • A method is suggested for validating the existence of bias error on GPS carrier measurement. The baseline constraint is used as an addition measurement, which augments the original measurement equation. The detection probability is calculated on both cases. The first case is using GPS carrier measurement only, the second case is using GPS carrier and a baseline constraint. The improvement of the detection probability is shown, and the advantage of using baseline constraint is described statistically, the results of the simulation is shown and analyzed.

Experimental Results of Ship-To-Ship Lightering Operations Applied Velocity Information GPS

  • Yoo, Yun-Ja;Pedersen, Egil;Kouguchi, Nobuyoshi;Song, Chae-Uk
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.577-583
    • /
    • 2014
  • A ship-to-ship (STS) lightering operation takes place in order to transfer cargo (e.g. crude oil or petroleum products) between an ocean-going ship and a service ship alongside it. Instrumental measurements to accurately determine the relative speeds and distances during the approach between the vessels would benefit the operational safety and efficiency. A velocity information GPS (VI-GPS) system, which uses the instantaneous velocity measures from carrier-phase Doppler measurement, has been applied in a field observation onboard a service ship (Aframax tanker) approaching a ship-to-be-lightered (VLCC) in open waters. This article proposes to apply VI-GPS as the input sensor to a guidance and decision-support system aiming to provide accurate velocity information to the officer in charge of an STS operation. A method for precise velocity measurement using VI-GPS was described and the measurement results were compared each other with the results of Voyage Data Recorder (VDR) and VI-GPS that showed the concept of a guidance and decision-support system applying VI-GPS with the field test results during STS operations. Also, it turned out that VI-GPS has sufficient accuracy to serve as an input sensor from the field test results.

Comparison of Calibration Models for GPS Antenna Phase Center Variations (GPS 안테나 위상중심변동 보정모델 비교)

  • Park, Kwan-Dong;Won, Ji-Hye
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.4
    • /
    • pp.319-326
    • /
    • 2006
  • To get the highly-accurate and precise position of a GPS receiver, they should consider the state-of-the-art GPS force and measurement models. Especially, the phase center variations (PCV) of a GPS antenna can cause several centimeters of positioning errors in the vertical direction. In this study, we implemented four different models of PCV and evaluated their impact on the computed coordinates. The test data were taken from the 14 National Geography Information Institute permanent GPS stations and 30 Minisry of Government Administration and Home Affairs sites. For different combinations of calibration methods, an average of 1.3-2.6cm of height difference was observed. Also, we found a maximum error of ${\sim}4mm$ in the estimates of the precipitable water vapors.