• Title/Summary/Keyword: GPS navigation

Search Result 1,412, Processing Time 0.025 seconds

Practical Applications Study of the Pseudolite (의사위성 활용방안 연구)

  • Chang, Jae-Won;Kwon, TaeHee;Lee, Sang Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.129-135
    • /
    • 2004
  • In this paper, the practical applications of the pseudolite are explained with the basic concept of the pseudolite. Many researches have been developed to improve the performance of the GPS. Most of those researches need the extra equipments. But without the extra equipments, the performance of GPS can be improved only with the change in the software in GPS system. In this paper, the pseudolite and the integrated navigation system including GPS as well as pseudolite only with navigation system for the demand of more precise navigation system are introduced. Also, the advantage of the pseudolite is confirmed by some simulations.

  • PDF

Analysis of the Combined Positioning Accuracy using GPS and GLONASS Navigation Satellites

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • In this study, positioning results that combined the code observation information of GPS and GLONASS navigation satellites were analyzed. Especially, the distribution of GLONASS satellites observed in Korea and the combined GPS/GLONASS positioning results were presented. The GNSS data received at two reference stations (GRAS in Europe and KOHG in Goheung, Korea) during a day were processed, and the mean value and root mean square (RMS) value of the position error were calculated. The analysis results indicated that the combined GPS/GLONASS positioning did not show significantly improved performance compared to the GPS-only positioning. This could be due to the inter-system hardware bias for GPS/GLONASS receivers, the selection of transformation parameters between reference coordinate systems, the selection of a confidence level for error analysis, or the number of visible satellites at a specific time.

A Study on Development of Video Navigation System with real-time GPS Information

  • Jang, Jin-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.95-99
    • /
    • 2018
  • This research is related to GPS(global positioning system) enabled device navigation service and consists of two parts. The first is the logic that records the route guidance video and records GPS information in time, and the second is the logic that outputs the created video data based on real time GPS. The recording logic first determines the origin and destination, records the video from the origin to the destination and it adjusts the speed of the image in a specific area so that the user can see it easily. And insert ancillary information and advertisements that can help guide the route. In the output logic, we provide navigation services using the video and GPS data tables we created, and it receives user's GPS information in real time and corrects it based on the recent user location to reduce errors. This provides local guidance services to people who lack language skills like foreigners.

A Study on Development of GPS Simulation Tool Kit (GPS Simulation System 개발에 관한 연구)

  • 양원재;전승환
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10b
    • /
    • pp.65-73
    • /
    • 1998
  • Ship's positino data obtaining method is ine of the very important factor innavigation . Nowadays, GPS(Global Positioning System) using the earth orbiting satellites are equipped and operated for the position finding. Because it provides more precise position information than other equipments and is very convenient for navigator. In this study, it is designed to develop the GPS simulator for everybody being able to proactise the GPS operating skill like as navigation planning, navigation calculating etc. And also, it can be operated with personal computer without real GPS receiver. This simulation system is based on the real GPS receiver system and built by the visual basic 5.0 program. And it displays the ship's position and navigating information and plots the ship's moving track on the screen in real time according as initial setup data-main engine's rpm, rudder angle, depature position and waypoint.

  • PDF

Performance Improvement of Low-cost DR/GPS for Land Navigation using Sigma Point Based RHKF Filter

  • Cho, Seong-Yun;Choi, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1450-1455
    • /
    • 2005
  • This paper describes a DR construction for land navigation and the sigma point based receding horizon Kalman FIR (SPRHKF) filter for DR/GPS hybrid navigation system. A simple DR construction is adopted to improve the performance both of the pure land DR navigation and the DR/GSP hybrid navigation system. In order to overcome the flaws of the EKF, the SPKF is merged with the receding horizon strategy. This filter has several advantages over the EKF, the SPKF, and the RHKF filter. The advantages include the robustness to the system model uncertainty, the initial estimation error, temporary unknown bias, and etc. The computational burden is reduced. Especially, the proposed filter works well even in the case of exiting the unmodeled random walk of the inertial sensors, which can be occurred in the MEMS inertial sensors by temperature variation. Therefore, the SPRHKF filter can provide the navigation information with good quality in the DR/GPS hybrid navigation system for land navigation seamlessly.

  • PDF

Personal Navigation System Using GPS and Dead Reckoning (GPS와 추축항법을 이용항 개인휴대 항법시스템)

  • Hong, Jin-Seok;Yoon, Seon-Il;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.454-464
    • /
    • 2001
  • In this paper, a personal navigation system is developed using GPS and dead reckoning sensors. This personal navigation system can be used to track a person inside a building, on an urban street, and in the mountain area. GPS can provide accurate absolute position information, but it cant be used without receiving enough satellite signals. Although the inertial sensors such as gyro an accelerometer and be used without this diggiculty, the inertial sensors severely suffer from their drift errors and the magne-tometer can be easily distorted by surrounding electromagnetic field. GPS and DR sensors can be inte-grated together to overcome these problems. A new personal navigation system that can be carried wit person is developed. A pedometer. actually vertically mounted accelerometer, detects ones footstep and gyro detects heading angle. These DR sensors are integrated with GPS and the humans walking pattern provides additional navigation information for compensating the DR sensors. The field testes are performed to evaluated the proposed navigation algorithm.

  • PDF

Improving INS/GPS Integrated System Position Error using Dilution of Precision (Dilution of Precision 정보를 이용한 INS/GPS 결합시스템 위치오차 개선)

  • Kim, Hyun-seok;Baek, Seung-jun;Cho, Yun-cheol
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.138-144
    • /
    • 2017
  • A method for improving the integrated navigation performance in the INS/GPS navigation system by the considering that the condition that the geometric arrangement of the satellite is degraded due to limitation of the line of sight of the satellite such as geographic feature and GPS signal jamming is proposed. A variable covariance extended Kalman filter (VCEKF) that correlated to the measured covariance to the DOP of GPS is suggested. The navigation performance of integrated navigation system using EKF and VCEKF is analyzed by Monte-Carlo simulations. The result is verified that VCEKF has better estimation performance than EKF using fixed covariance on condition that DOP value is larger than the smaller value.

Single Frequency GPS Relative Navigation for Autonomous Rendezvous and Docking Mission of Low-Earth Orbit Cube-Satellites

  • Shim, Hanjoon;Kim, O-Jong;Yu, Sunkyoung;Kee, Changdon;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.357-366
    • /
    • 2020
  • This paper addressed a relative navigation method for autonomous rendezvous and docking of cube-satellites using single frequency Differential GPS (DGPS) under the intermittent communication between satellites. Since the ionospheric error of GPS measurement is variable depending on the visible satellites, a few meters error of relative navigation is occurred in the Low-Earth Orbit (LEO) environment. Therefore, it is essential to remove the ionospheric error to perform relative navigation. Besides, an intermittent communication period for receiving GPS measurements of the target satellite is limited for getting information every sampling time. To solve this problem, a method combining range domain DGPS and orbit propagation is proposed in this paper. The proposed method improves the performance of DGPS by using Hatch filter and solves an intermittent communication problem by estimating the relative position and velocity using Hill-Clohessy-Wiltshire Equation. Through the simulation, it is verified that the suggested algorithm provides the relative position error within RMS 0.5 m and the relative velocity error within RMS 3 cm/s. Furthermore, it has the advantage that it is suitable for real-time implementation using single-frequency GPS measurements and is computationally efficient.

The Design and Implementation Android OS Based Portable Navigation System For Visually Impaired Person and N : N Service (시각 장애인을 위한 Android OS 기반의 Portable Navigation System 설계 및 구현 과 N : N Service)

  • Kong, Sung-Hun;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.327-330
    • /
    • 2012
  • In the rapid growth of cities, road has heavy traffic and many buildings are under constructions. These kinds of environments make more difficulty for a person who is visually handicapped to walk comfortable. To alleviate the problem, we introduce Android based Portable Navigation System to help walking for Visually Impaired Person. It follows, service center give instant real time monitoring to visually impaired person for their convenient by this system. Android based Portable Navigation System has GPS, Camera, Audio and WI-FI(wireless fidelity) available. It means that GPS location and Camera image information can be sent to service center by WI-FI network. To be specific, transmitted GPS location information enables service center to figure out the visually impaired person's whereabouts and mark the location on the map. By delivered Camera image information, service center monitors the visually impaired person's view. Also, they can offer live guidance to visually impaired person by equipped Audio with live talking. To sum up, Android based Portable Navigation System is a specialized navigation system that gives practical effect to realize more comfortable walking for visually impaired person.

  • PDF

The Design and Implementation Navigation System For Visually Impaired Person (시각 장애인을 위한 Navigation System의 설계 및 구현)

  • Kong, Sung-Hun;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2702-2707
    • /
    • 2012
  • In the rapid growth of cities, road has heavy traffic and many buildings are under constructions. These kinds of environments make more difficulty for a person who is visually handicapped to walk comfortable. To alleviate the problem, we introduce Navigation System to help walking for Visually Impaired Person. It follows, service center give instant real time monitoring to visually impaired person for their convenient by this system. This Navigation System has GPS, Camera, Audio and Wi-Fi(wireless fidelity) available. It means that GPS location and Camera image information can be sent to service center by Wi-Fi network. To be specific, transmitted GPS location information enables service center to figure out the visually impaired person's whereabouts and mark the location on the map. By delivered Camera image information, service center monitors the visually impaired person's view. Also, they can offer live guidance to visually impaired person by equipped Audio with live talking. To sum up, Android based Portable Navigation System is a specialized navigation system that gives practical effect to realize more comfortable walking for visually impaired person.