• Title/Summary/Keyword: GPS meteorology

Search Result 17, Processing Time 0.029 seconds

Determination of Weighted Mean Temperature for the GPS Precipitable Water Vapor Estimation (GPS PWV 추정을 위한 가중 평균 온도식 결정)

  • Song Dong Seob;Yun Hong Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.4
    • /
    • pp.323-329
    • /
    • 2004
  • Water vapor is an important parameter in monitoring changes in the Earth's climate and it can be used to improve weather forecasting. However, it haven't observed accurately by reasons of structural and economic problem of observation. GPS meteorology technique for precipitable water vapor measurement is currently actively being researched an advanced nation. Main issue of GPS meteorology is an accuracy of PWV measurement related weighted mean temperature and meteorological data. In this study, the korean weighted mean temperature had been recalculated by a linear regression method based on meteorological observations from 6 radiosonde stations for 2003 year. We examined the accuracy of PWV estimates from GPS observations and Radiosonde observations by new korean weighted mean temperature and others.

Development of Time-dependent mean Temperature Equations for GPS Meteorology

  • Ha, Jihyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.4
    • /
    • pp.143-147
    • /
    • 2014
  • The mean temperature is one of the key parameters in computing Precipitable Water Vapor (PWV) from Global Positioning System (GPS) measurements and is usually derived as a function of surface temperature through the use of a mean temperature equation (MTE). In this study, two new types of MTEs were developed as functions solely of the observation time so that the mean temperature can be obtained without surface temperature measurements. To validate the new models, we created one-year time series of GPS-derived PWV using the new MTEs and compared them with the radiosonde-observed PWV. The bias and root-mean-square error were on the other of ~1 mm and ~2 mm, respectively.

Effects of geomagnetic storms on the middle atmosphere and troposphere by ground-based GPS observations

  • Jin, Shuang-Gen;Park, Jong-Uk;Park, Pil-Ho;Cho, Jung-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.47-51
    • /
    • 2006
  • Among Solar activities' events, the geomagnetic storms are believed to cause the largest atmospheric effects. The geomagnetic storm is a complex process of solar wind/magnetospheric origin. It is well known to affect severely on the ionosphere. However, this effect of this complex process will maybe act at various altitudes in the atmosphere, even including the lower layer and the neutral middle atmosphere, particularly the stratosphere. Nowadays, the GPS-derived ZTD (zenith tropospheric delay) can be transformed into the precipitable water vapor (PWV) through a function relation, and further has been widely used in meteorology, especially in improving the precision of Numerical Weather Prediction (NWP) models. However, such geomagnetic effects on the atmosphere are ignored in GPS meteorology applications. In this paper, we will investigate the geomagnetic storms' effects on the middle atmosphere and troposphere (0-100km) by GPS observations and other data. It has found that geomagnetic storms' effect on the atmosphere also appears in the troposphere, but the mechanism to interpret correlations in the troposphere need be further studied.

  • PDF

Determination of Korean Weighted Mean Temperature for Calculation of Tropospheric Zenith Hydrostatic Delay (대류권 천정 방향 건조 지연량 계산을 위한 우리나라 가중 평균 온도식 결정)

  • 송동섭;황학;윤홍식
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.47-53
    • /
    • 2004
  • Water vapor is an important parameter in monitoring changes in the Earth's climate and it can be used to improve weather forecasting However, it haven't observed accurately by reasons of structural and economic problem of observation. GPS meteorology technique for precipitable water vapor measurement is currently actively being researched an advanced nation. Main issue of GPS meteorology is an accuracy of PWV measurement related weighted mean temperature and meteorological data. In this study, the korean weighted mean temperature had been recalculated by a linear regression method based on meteorological observations from 6 radiosonde stations for 2003 year. We examined the accuracy of PWV estimates from GPS observations and Radiosonde observations by new korean weighted mean temperature and others.

  • PDF

Korea peninsula water vapor monitoring using GPS/MET technique(In case of the typhoon MAEMI) (GPS/MET 기술을 이용한 한반도 수증기 변화량 모니터링(태풍 매미의 경우))

  • 송동섭;윤홍식
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.131-137
    • /
    • 2004
  • GPS/Meteorology technique for PWV monitoring is currently actively being researched an advanced nation. We deal with the monitoring of GPS derived PWV during the passage of Typhoon MAEMI. Typhoon MAEMI which caused a series damage was passed over in Korea peninsula from September 12 to September 13, 2003. We obtained GPS-PWV at 17th GPS permanent stations. We retrieve GPS data hourly and use Gipsy-Oasis II software. The GPS-PWV time series results demonstrate that PWV is, in general, high before and during the occurrence of the typhoon, and low after the typhoon.

  • PDF

Precision Evaluation of GPS PWV and Production of GPS PWV Tomograph during Foul Weather (악천후시 GPS PWV의 측정 정밀도 검증 및 GPS PWV 변화도 작성)

  • 윤홍식;송동섭
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.69-74
    • /
    • 2003
  • GPS/Meteorology technique for PWV monitoring is currently actively being researched an advanced nation. But, there is no detailed research on an evaluation of precision of GPS derived PWV measurements during the period of foul weather condition. Here, we deal with the precision of GPS derived PWV during the passage of Typhoon RUSA. Typhoon RUSA which caused a series damage was passed over in Korea from August 30 to September 1, 2002. We compared th tropospheric wet delay estimated from GPS observation and radio-sonde data at four sites(Suwon, Kwangju, Taegu, Cheju). The mean standard deviation of PWV differences at each site is ${\pm}$0.005mm. We also obtained GPS PWV at 13 GPS permanent stations(Seoul, Wonju, Seosan, Sangju, Junju, Cheongju, Taegu, Wuljin, Jinju, Daejeon, Mokpo, Sokcho, Jeju). GPS PWV time series shows, in general, peak value before and during th passage of RUSA, and low after the RUSA. GPS PWV peak time at each station is related to the progress of a typhoon RUSA. We obtained very similar result as we compare GMS satellite image with tomograph using GPS PWV and we could present th possibility of practical use by numerical model for weather forecast.

  • PDF

Analysis of GPS Precipitable Water Vapor Variation During the Influence of a Typhoon EWINIAR (태풍 에위니아 영향력에서의 GPS 가강수량 변화 분석)

  • Song, Dong Seob;Yun, Hong Sic
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.1033-1041
    • /
    • 2006
  • In this study, we calculated a space-time variation of GPS precipitable water vapor using GPS meteorology technique during a progress of the typhoon EWINIAR had made an effect on Korean peninsular at 10 July, 2006. We estimated tropospheric dry delay and wet delay for one hourly using 22 GPS permanent stations and precipitable water vapor was conversed by using surface meteorological data. The Korean weighted mean temperature and air-pressure of versa-reduction to the mean sea level have been used for an accuracy improvement of GPS precipitable water vapor estimation. Finally, we compared MTSAT water vapor image, radar image and precipitable water vapor map during a passage of the typhoon EWINIAR.

Precise Orbit Determination of GPS using Bernese GPS Software

  • Baek, Jeong-Ho;Cho, Sung-Ki;Jo, Jung-Hyun;Park, Jong-Uk
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.267-270
    • /
    • 2006
  • The International GNSS Service (IGS) has managed the global GNSS network and provided the highest quality GNSS data and products, which are GPS ephemerides, clock information and Earth orientation parameter, as the standard for GNSS. An important part of its works is to provide the precise orbits of GPS satellites. GPS satellites send their orbit information (broadcast ephemerides) to users and their accuracies are approximately 1.6 meters level, but those accuracies are not sufficient for the high precise applications which require millimeters precision. The current accuracies of the IGS final orbits are within 5 centimeters level and they are used for Earth science, meteorology, space science, and they are made by the IGS analysis centers and combined by the IGS analysis center coordinator. The techniques making the products are very difficult and require the high technology. The Korea Astronomy and Space Science Institute (KASI) studies to make the IGS products. In this study, we developed our own processing strategy and made GPS ephemerides using Bernese GPS software Ver. 5.0. We used the broadcast ephemerides as the initial orbits and processed the globally distributed 150 IGS stations. The result shows about 6 to 8 centimeters in root-mean-squares related to IGS final orbits in each day during a week. We expect that this study can contribute to secure our own high technology.

  • PDF

DEVELOPMENT OF A LOCAL MEAN TEMPERATURE EQUATION FOR GPS-BASED PRECIPITABLE WATER VAPOR OVER THE KOREAN PENINSULA (GPS 가강수량 결정을 위한 한국형 평균온도식 개발)

  • Ha, Ji-Hyun;Park, Kwan-Dong;Heo, Bok-Haeng
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.373-384
    • /
    • 2006
  • The Bevis' mean temperature equation (MTE) is generally used in estimating Precipitable Water Vapor (PWV) based on GPS measurements. Because the equation was derived from Worth American meteorological data, however, it may induce errors in PWV if the equation is applied to Korea which has different climate conditions. In this study, we developed a new MTE using local meteorological data. We compared PWVs from the new equation with those from the Bevis and two other local equations. The PWV differences from the four equations increase as a function of surface temperatures at the observation site, reaching up to $1{\sim}3mm$.