• Title/Summary/Keyword: GPS baseline analysis

Search Result 66, Processing Time 0.026 seconds

Development of a GPS Baseline Analysis Software for L1 Carrier Phase Using LAMBDA Method (LAMBDA 기법을 활용한 L1 반송파의 GPS 기선해석 프로그램 개발)

  • 박정현;이용욱;권재현;강준묵
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.2
    • /
    • pp.173-180
    • /
    • 2003
  • As the utility value of GPS in surveying field is on the increase after the conversion into the world geodetic system, most of the baseline processing programs seeking the relative baseline vector for the roving point based on the base point are dependent on the foreign software, and such dependence remains a stumbling block to its wide application. In this study an algorithm was established settling ambiguity through LAMBDA techniques and the baseline processing program was developed for Ll carrier phase using visual c++ 6.0, which is an object-oriented language. And the developed program proved that it maintained a difference of less than 4.9 cm over the short baseline of 4.9 km or shorter when compared with other commercialized programs.

Calculation of Geometric Geoidal Height by GPS Surveying on 1st and 2nd order Benchmark Line (1, 2등 수준노선에서 GPS 측량에 의한 기하학적 지오이드고의 계산)

  • Lee, Suk-Bae;Kim, Jin-Soo;Kim, Cheol-Young;Kwon, Jay-Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.213-223
    • /
    • 2009
  • In geoid modelling field, it is very important the GPS/leveling data because it could be check-out the accuracy of gravimetric geoid and computed the hybrid geoid. In this study, GPS surveying was accomplished in the test area including mountainous area to improve the GPS/leveling data density in Korea. And the geometric geoidal heights was calculated using the GPS/leveling data in the test area and the accuracy of the geoidal heights was analyzed. For this study, GPS surveying was accomplished on the 211 1st and 2nd order benchmarks in Gyeongbuk province and 198 GPS/leveling data were achieved after both baseline analysis and network adjustment. Geometric geoidal heights were calculated using these 198 GPS/leveling data and the accuracy analysis was done by comparison with the geoidal heights from EGM2008 geopotential model. The results showed that the bias and standard deviation computed from 190 GPS/leveling data after gross removal was -0.185$\pm$0.079m. And also, the accuracy analyses according to the benchmark order, baseline length, and altitude were accomplished.

The $3^{rd}$ Order GPS Network Adjustment for Determining of KGD2002 Coordinate Sets (GPS망조정에 의한 3등측지기준점의 세계측지계 성과산정)

  • Lee, Young-Jin;Jeong, Kwang-Ho;Lee, Hung-Kyu;Kwon, Chan-Oh;Song, Jun-Ho;Cho, Jun-Rae;Nam, Gi-Beom;Cha, Sang-Heon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.5
    • /
    • pp.437-449
    • /
    • 2007
  • This paper deals with issues of GPS network adjustment for the purpose of determining the $3^{rd}$ order national geodetic control points based on the Korean Geodetic Datum which has newly adopted in the country since early 2003. After examining and arranging all the observations, GPS baseline analyses were performed to estimate baseline vectors between two control points. All the observations were divided into 17 block networks in order to accelerate the adjustment efficiency. After applying a minimally constrained adjustment technique to each of the block networks for the sake of detecting outliers and examining network precision, over constrained adjustments by fixing all of the $2^{nd}$ order control points within the block network were carried out to derive final coordinate sets. The final solutions indicated that the accuracy of the adjusted coordinates was better than 1cm and 2cm in the horizontal and vertical component, respectively.

Analysis of Tidal Effects on Network-based GPS Positioning (조석영향에 의한 망기반 GPS 측위 변화 분석)

  • Yoon, Ha-Su;Hong, Chang-Ki;Kwon, Jay-Hyoun;Choi, Yun-Soo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.31-34
    • /
    • 2010
  • The rover positioning is performed by estimating the baseline vector components in doubledifference positioning mode. This means that relative displacement due to the tide effects can be neglected when the distance between the reference and rover station is relatively short. However, the tide effects should be carefully modeled and removed as the baseline length gets longer. In this study, the relative displacement over the Korean Peninsula due to tide effects are examined through the numerical analysis. The results show that the tide modeling is required for the precise GPS positioning at cm-level accuracy.

  • PDF

Study on Observabi1ity Entrancement of SDINS in-flight using GPS Carrier Phase Measurements (GPS 반송파위상 정보를 이용한 SDINS의 운항중 정렬에 대한 가관측성 향상기법 연구)

  • 박준구;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.54-54
    • /
    • 2000
  • For its synergistic relationship, an integrated SDINS/GPS system has been adopted in many navigation areas. As an application of SDINS/GPS integration, the in-flight alignment process of a SDINS utilizing GPS carrier phase measurements is introduced and analyzed via an observability analysis using nul1 space method. A measurement model of double-differenced GPS carrier phase measurements is newly derived in order to be used with a SDINS error model. Also, conditions for determining the complete observability of a SDINS/GPS system are suggested and proved. Consequently, it is shown that the system is not completely observable in case of one basel me. With one baseline aligned with y-axis of body frame, pitch error and x-axis accelerometer bias are unobservable states. Also shown is that al1 states are completely observable when sequential maneuver is performed. Above results are confirmed by a covariance analysis.

  • PDF

Success Rate Analysis in GPS Attitude Determination Using a Unscented Kalman Filter (GPS반송파를 이용한 자세결정에서 UKF적용을 통한 성공률 변화 분석)

  • Kwon, Chul-Bum;Chun, Se-Bum;Lee, Eun-Sung;Kang, Tae-Sam;Jee, Gyu-In;Lee, Young-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.222-227
    • /
    • 2005
  • Resolving the integer ambiguity of GPS carrier phase measurements is the most important routine in precise positioning. In this paper, success rate is analyzed when using baseline information in the process of determining attitude. The result is verified through the simulation. Determining the initial position for the ambiguity resolution is estimated by using code measurement and baseline constraint. Success rate is estimated using covariance of the formed initial position. UKF has been used to overcome the nonlinear baseline condition during the process so that the higher success rate has been obtained compared with the general attitude determination.

High Precision GPS Positioning Referred to ITRF (ITRF에 준거한 정밀 GPS 측위에 관한 연구)

  • 윤홍식;황진상;최윤수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.3
    • /
    • pp.251-261
    • /
    • 2000
  • This paper deals with the precision analysis of GPS measurement referred to ITRF96 which is the new reference frame announced in 1996, and show the data processing results of short and long baselines with different methods. In this paper, we minimized the observation error of GPS using precise ephemerides which has provided by Jet Propulsion Laboratory and represents the comparative analysis results of baseline measurements using GIPSY-OASIS II software. Here, we also discussed the accuracy of data processing methods.

  • PDF

Sustainable Surface Deformation Related with 2006 Augustine Volcano Eruption in Alaska Measured Using GPS and InSAR Techniques

  • Lee, Seulki;Kim, Sukyung;Lee, Changwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.357-372
    • /
    • 2016
  • Augustine volcano, located along the Aleutian Arc, is one of the most active volcanoes in Alaska and nearby islands, with seven eruptions occurring between 1812 and 2006. This study monitored the surface displacement before and after the most recent 2006 eruption. For analysis, we conducted a time-series analysis on data observed at the permanent GPS(Global Positioning System) observation stations in Augustine Island between 2005 and 2011. According to the surface displacement analysis results based on GPS data, the movement of the surface inflation at the average speed of 2.3 cm/year three months prior to the eruption has been clearly observed, with the post-eruption surface deflation at the speed of 1.6 cm/year. To compare surface displacements measurement by GPS observation, ENVISAT(Environmental satellite) radar satellite data were collected between 2003 and 2010 and processed the SBAS(Small Baseline Subset) method, one of the time-series analysis techniques using multiple InSAR(Interferometric Synthetic Aperture Radar) data sets. This result represents 0.97 correlation value between GPS and InSAR time-series surface displacements. This research has been completed precise surface deformation using GPS and time-series InSAR methods for a detection of precursor symptom on Augustine volcano.

Long-term analysis of tropospheric delay and ambiguity resolution rate of GPS data

  • Kim, Su-Kyung;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.673-680
    • /
    • 2012
  • Long-term GPS data analysis was performed in order to analyze the seasonal variation of tropospheric delay and the success rate of the ambiguity resolution. For this analysis, a total of 57 stations including 10 IGS stations in East Asia were processed together with double-differenced observables using Bernese GPS Software V5.0. The time span for this study ranges from 2002.0 to 2012.5 (10.5 years). The average baseline length is 339.0 km and the maximum reaches up to 2,000 km. The analysis is focused on two things: the annual variation of the tropospheric delay and the ambiguity resolution rate. The tropospheric delay is closely related to the weather condition, especially relative humidity, therefore it was estimated that the maximum would be in summer, while reaching its minimum in winter with the apparent seasonal variations. On the contrary, however, the success rate of the ambiguity resolution shows the opposite pattern: its maximum was in winter and minimum in summer. The fact seems to be induced by the surrounding conditions; that is, the trees thick with leaves near the GPS antenna interfere with GPS signals in summer. This seems to confirm partly that there is a distinct trend in the decreasing success rate since 2006 because the trees are growing every year. It is necessary to eliminate the factors that degrade the GPS quality and the tropospheric modeling for Korea needs to be studied further.