• Title/Summary/Keyword: GPS anomaly

Search Result 37, Processing Time 0.022 seconds

biometric and location data User Location Prediction and Anomaly Detection System Proposal (생체데이터와 위치데이터를 통한 사용자위치 예측 및 이상징후 탐지 시스템제안)

  • Kim, Kyung-Hee;Kang, Hyeok;Lee, Keun-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.122-123
    • /
    • 2022
  • 최근 들어 인공지능에 대한 발달과 많은 매체들로 인해 사람들의 관심이 증가하고 있다. 또한 GPS 나 Beacon 과 같이 위치 측위 기술이 증가함에 따라 실외 측위 기술이 많이 발달되었고, 실내에서도 사용자의 정확한 위치를 측정할 수 있는 기술들이 발달되고 있다. 본 논문에서는 RNN 알고리즘을 이용하여 비콘을 통해 수집된 사용자의 반복적이고 순차적인 위치정보, 타임스탬프 데이터를 학습시키고 ECG 를 결합하여 사용자 인증을 하여 사용자의 시간별 위치 예측과 이상 징후 탐지 시스템을 제안하고자 한다.

Fuel Consumption Prediction and Life Cycle History Management System Using Historical Data of Agricultural Machinery

  • Jung Seung Lee;Soo Kyung Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.5
    • /
    • pp.27-37
    • /
    • 2022
  • This study intends to link agricultural machine history data with related organizations or collect them through IoT sensors, receive input from agricultural machine users and managers, and analyze them through AI algorithms. Through this, the goal is to track and manage the history data throughout all stages of production, purchase, operation, and disposal of agricultural machinery. First, LSTM (Long Short-Term Memory) is used to estimate oil consumption and recommend maintenance from historical data of agricultural machines such as tractors and combines, and C-LSTM (Convolution Long Short-Term Memory) is used to diagnose and determine failures. Memory) to build a deep learning algorithm. Second, in order to collect historical data of agricultural machinery, IoT sensors including GPS module, gyro sensor, acceleration sensor, and temperature and humidity sensor are attached to agricultural machinery to automatically collect data. Third, event-type data such as agricultural machine production, purchase, and disposal are automatically collected from related organizations to design an interface that can integrate the entire life cycle history data and collect data through this.

Free-air anomaly from Airborne Gravity Surveying (항공중력측정에 의한 프리에어 이상 산출)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Lee, Bo-Mi;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.139-147
    • /
    • 2009
  • The gravity data collected and reserved in Korea is seriously biased in its distribution. That is, only the west-southern part of the peninsula including Chungcheong and Jeonla area has dense distribution while only a part is covered in Gyoungsang area. Especially, the low density of the gravity data in mountainous area basically limits the accuracy of the gravimetric geoid in Korea. As one of the solution to overcome the problem, an airborne gravity survey were conducted from Dec. 2008 $\sim$ Jan. 2009. In this study, free-air gravity anomaly derived from the airborne gravity data which has consistent quality are presented. The data processing for the airborne gravity is composed of several corrections of errors such as errors from gravity measurement, errors from flight dynamics, errors from GPS, and errors from time synchronization. We presented detailed explanations on the data processing with the final cross-over results. The free-air anomaly from airborne gravity finally shows the cross-over accuracy of 2.21mGal which reflects the precision of each track is 1.56mGal. It is expected that the result from this study will play a role as input data in precision geoid determination with ground and ship-borne gravity data after appropriate fusion process.

Dementia Patient Wandering Behavior and Anomaly Detection Technique through Biometric Authentication and Location-based in a Private Blockchain Environment (프라이빗 블록체인 환경에서 생체인증과 위치기반을 통한 치매환자 배회행동 및 이상징후 탐지 기법)

  • Han, Young-Ae;Kang, Hyeok;Lee, Keun-Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.5
    • /
    • pp.119-125
    • /
    • 2022
  • With the recent increase in dementia patients due to aging, measures to prevent their wandering behavior and disappearance are urgently needed. To solve this problem, various authentication methods and location detection techniques have been introduced, but the security problem of personal authentication and a system that can check indoor and outdoor overall was lacking. In order to solve this problem, various authentication methods and location detection techniques have been introduced, but it was difficult to find a system that can check the security problem of personal authentication and indoor/outdoor overall. In this study, we intend to propose a system that can identify personal authentication, basic health status, and overall location indoors and outdoors by using wristband-type wearable devices in a private blockchain environment. In this system, personal authentication uses ECG, which is difficult to forge and highly personally identifiable, Bluetooth beacon that is easy to use with low power, non-contact and automatic transmission and reception indoors, and DGPS that corrects the pseudorange error of GPS satellites outdoors. It is intended to detect wandering behavior and abnormal signs by locating the patient. Through this, it is intended to contribute to the prompt response and prevention of disappearance in case of wandering behavior and abnormal symptoms of dementia patients living at home or in nursing homes.

Implementation of Propagation delay estimation model of medium frequency for positioning (측위 적용을 위한 중파의 전파 지연 예측 모델 구현)

  • Yu, Dong-Hui
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.111-118
    • /
    • 2009
  • Against Anomaly of GPS, there are several projects of independent satellite navigation systems like Galileo of Europe and QZSS of Japan and modernization of terrestrial navigation system like Loran. In domestic, the need of independent navigation system was proposed and DGPS signal was nominated as the possible substitute. The DGPS signal uses medium frequency, which travels through the surface and cause the additional delay rather than the speed of light according to Conductivities and elevations of the irregular terrain. The similar approach is Locan-C. Loran-C has been widely used as the maritime location system. Loran-C uses the ASF estimation method and provides more precise positioning. However there was rarely research on this area in Korea Therefore, we introduce the legacy guaranteed model of additional delay(ASF) and present the results of implementation. With the comparison of the original Monteath results and BALOR results respectively, we guarantee that the implementation is absolutely perfect. For further works, we're going to apply the ASF estimation model to Korean DGPS system with the Korean terrain data.

Orbit Ephemeris Failure Detection in a GNSS Regional Application

  • Ahn, Jongsun;Lee, Young Jae;Won, Dae Hee;Jun, Hyang-Sig;Yeom, Chanhong;Sung, Sangkyung;Lee, Jeong-Oog
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.89-101
    • /
    • 2015
  • To satisfy civil aviation requirements using the Global Navigation Satellite System (GNSS), it is important to guarantee system integrity. In this work, we propose a fault detection algorithm for GNSS ephemeris anomalies. The basic principle concerns baseline length estimation with GNSS measurements (pseudorange, broadcasted ephemerides). The estimated baseline length is subtracted from the true baseline length, computed using the exact surveyed ground antenna positions. If this subtracted value differs by more than a given threshold, this indicates that an ephemeris anomaly has been detected. This algorithm is suitable for detecting Type A ephemeris failure, and more advantageous for use with multiple stations with various long baseline vectors. The principles of the algorithm, sensitivity analysis, minimum detectable error (MDE), and protection level derivation are described and we verify the sensitivity analysis and algorithm availability based on real GPS data in Korea. Consequently, this algorithm is appropriate for GNSS regional implementation.

Geoid Determination in South Korea from a Combination of Terrestrial and Airborne Gravity Anomaly Data

  • Jekeli, Christopher;Yang, Hyo Jin;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.567-576
    • /
    • 2013
  • The determination of the geoid in South Korea is a national imperative for the modernization of height datums, specifically the orthometric height and the dynamic height, that are used to monitor hydrological systems and environments with accuracy and easy revision, if necessary. The geometric heights above a reference ellipsoid, routinely obtained by GPS, lead immediately to vertical control with respect to the geoid for hydrological purposes if the geoid height above the ellipsoid is known accurately. The geoid height is determined from gravimetric data, traditionally ground data, but in recent times also from airborne data. This paper illustrates the basic concepts for combining these two types of data and gives a preliminary performance assessment of either set or their combination for the determination of the geoid in South Korea. It is shown that the most critical aspect of the combination is the gravitational effect of the topographic masses above the geoid, which, if not properly taken into account, introduces a significant bias of about 8 mgal in the gravity anomalies, and which can lead to geoid height bias errors of up to 10 cm. It is further confirmed and concluded that achieving better than 5 cm precision in geoid heights from gravimetry remains a challenge that can be surmounted only with the proper combination of terrestrial and airborne data, thus realizing higher data resolution over most of South Korea than currently available solely from the airborne data.