• Title/Summary/Keyword: GPS Simulator

Search Result 99, Processing Time 0.028 seconds

Implementation and Test of Simulator for Analyzing Effect of GNSS Jamming (GNSS 전파교란 영향분석 시뮬레이터 구현 및 시험)

  • Joo, Inone;Sin, Cheonsig
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.1-5
    • /
    • 2016
  • As a dependency on Global Navigation Satellite System (GNSS) becomes increase in various applications, its reliability has been very important. However, in South Korea, Global Positioning System (GPS) jamming incident happened four times since 2010. GNSS signal is so weak that it is highly susceptible to all types of the jamming. GNSS jamming can cause serious damage in the safety-critical applications based on the GNSS. In this paper, we present the GNSS jamming signal propagation prediction simulator based on ITU-R P.1546 model. This simulator is developed for preventing or reducing the damage from the GNSS jamming attack by predicting the jamming propagation strength based on the geographical information in Korean peninsula.

Availability Assessment of GPS Augmentation System Using QZSS at Urban Environment of seoul (서울 도심지에서의 QZSS를 이용한 GPS 확장시스템의 가용도 평가)

  • Yoo, Kyung-Ho;Sung, Sang-Kyung;Kang, Tae-Sam;Lee, Young-Jae;Lee, Eun-Sung;Lee, Sang-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.761-766
    • /
    • 2008
  • This paper analyzes the availability and Dilution Of Precision (DOP) of GPS, widely used in positioning, with and without augmentation using QZSS (Quasi-Zenith Satellite System). Orbit simulator for QZSS is developed using Kepler‘s orbital parameters. Also 3D modeling technique based on three-Dimensional GIS digital map and satellite tracking algorithm for visible satellite simulation system are discussed. Performance improvement of the availability and DOP were achieved by combining GPS with QZSS at urban environment of Seoul.

Design and Performance Evaluation of GPS Spoofing Signal Detection Algorithm at RF Spoofing Simulation Environment

  • Lim, Soon;Lim, Deok Won;Chun, Sebum;Heo, Moon Beom;Choi, Yun Sub;Lee, Ju Hyun;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.4
    • /
    • pp.173-180
    • /
    • 2015
  • In this study, an algorithm that detects a spoofing signal for a GPS L1 signal was proposed, and the performance was verified through RF spoofing signal simulation. The proposed algorithm determines the reception of a spoofing signal by detecting a correlation distortion of GPS L1 C/A code caused by the spoofing signal. To detect the correlation distortion, a detection criterion of a spoofing signal was derived from the relationship among the Early, Prompt, and Late tap correlation values of a receiver correlator; and a detection threshold was calculated from the false alarm probability of spoofing signal detection. In this study, an RF spoofing environment was built using the GSS 8000 simulator (Spirent). For the RF spoofing signal generated from the simulator, the RF spoofing environment was verified using the commercial receiver DL-V3 (Novatel Inc.). To verify the performance of the proposed algorithm, the RF signal was stored as IF band data using a USRP signal collector (NI) so that the data could be processed by a CNU software receiver (software defined radio). For the performance of the proposed algorithm, results were obtained using the correlation value of the software receiver, and the performance was verified through the detection of a spoofing signal and the detection time of a spoofing signal.

3D video simulation system using GPS (GPS를 이용한 3D 영상 구현 시뮬레이션 시스템)

  • Joo, Sang-Woong;Kang, Byeong-Jun;Shim, Kyou-Chul;Kim, Kyung-Hwan;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.891-893
    • /
    • 2012
  • Currently, aircraft and automobile simulator for training provides a variety of training by making hypothetical situation on a simulator Installed on the ground Currently. And the instructor maximizes the effectiveness of the training by Monitoring training and instructing the required training. When trainees are boarding the aircraft or automobile. The Instructor in the ground is not able to monitoring aircraft, automobile. The assessment of the training is not easy after the end of the training Therefore, it is difficult to provide high quality of education to the students. In this paper, Simulation software is to develop the following. Collecting GPS and real-time information for aircraft, automobile ${\grave{a}}implementing$ 3D simulation. Implementing Current image of the aircraft or automobile in the screen by 3D Real-time monitoring of training situation at the control center utilizing for training saving 3D video files Analysis, evaluation on training After the end of the training.

  • PDF

A Preliminary Development of Real-Time Hardware-in-the-Loop Simulation Testbed for the Satellite Formation Flying Navigation and Orbit Control (편대비행위성의 항법 및 궤도제어를 위한 실시간 Hardware-In-the-Loop 시뮬레이션 테스트베드 초기 설계)

  • Park, Jae-Ik;Park, Han-Earl;Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.99-110
    • /
    • 2009
  • The main purpose of the current research is to developments a real-time Hardware In-the-Loop (HIL) simulation testbed for the satellite formation flying navigation and orbit control. The HIL simulation testbed is integrated for demonstrations and evaluations of navigation and orbit control algorithms. The HIL simulation testbed is composed of Environment computer, GPS simulator, Flight computer and Visualization computer system. GPS measurements are generated by a SPIRENT GSS6560 multi-channel RF simulator to produce pseudorange, carrier phase measurements. The measurement date are transferred to Satrec Intiative space borne GPS receiver and exchanged by the flight computer system and subsequently processed in a navigation filter to generate relative or absolute state estimates. These results are fed into control algorithm to generate orbit controls required to maintain the formation. These maneuvers are informed to environment computer system to build a close simulation loop. In this paper, the overall design of the HIL simulation testbed for the satellite formation flying navigation and control is presented. Each component of the testbed is then described. Finally, a LEO formation navigation and control simulation is demonstrated by using virtual scenario.

Preliminary Orbit Determination For A Small Satellite Mission Using GPS Receiver Data

  • Nagarajan, Narayanaswamy;Bavkir, Burhan;John, Ong Chuan Fu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.141-144
    • /
    • 2006
  • The deviations in the injection orbital parameters, resulting from launcher dispersions, need to be estimated and used for autonomous satellite operations. For the proposed small satellite mission of the university there will be two GPS receivers onboard the satellite to provide the instantaneous orbital state to the onboard data handling system. In order to meet the power requirements, the satellite will be sun-tracking whenever there is no imaging operation. For imaging activities, the satellite will be maneuvered to nadir-pointing mode. Due to such different modes of orientation the geometry for the GPS receivers will not be favorable at all times and there will be instances of poor geometry resulting in no output from the GPS receivers. Onboard the satellite, the orbital information should be continuously available for autonomous switching on/off of various subsystems. The paper presents the strategies to make use of small arcs of data from GPS receivers to compute the mean orbital parameters and use the updated orbital parameters to calculate the position and velocity whenever the same is not available from GPS receiver. Thus the navigation message from the GPS receiver, namely the position vector in Earth-Centered-Earth-Fixed (ECEF) frame, is used as measurements. As for estimation, two techniques - (1) batch least squares method, and (2) Kalman Filter method are used for orbit estimation (in real time). The performance of the onboard orbit estimation has been assessed based on hardware based multi-channel GPS Signal simulator. The results indicate good converge even with short arcs of data as the GPS navigation data are generally very accurate and the data rate is also fast (typically 1Hz).

  • PDF

A Study on Enhanced Accuracy using GPS L1 and Galileo E1 Signal Combined Processing (GPS L1/갈릴레오 E1 복합신호처리를 통한 위치정확도 향상 연구)

  • Sin, Cheon-Sig;Lee, Sang-Uk;Yoon, Dong-Won
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.68-74
    • /
    • 2011
  • In this paper, we present the enhancement results such as availability and accuracy using the GPS L1 and Galileo E1 signal combination. To enhance the acquisition and tracking performance of signal processing in GNSS receiver. several tracking loops with integrator, discriminator, and loop filter module are applied. Also, this paper presents the performance comparison results between prototype receiver equipped with hardware board and software receiver. Also the tracking loop performance of real hardware receiver is verified by comparing with tracking accuracy, sensitivity occurred by the Spirent simulator. Especially, to process the Galileo E1 signal, it is used the a power early late type which is the typical type for DLL discriminator.

A GPS Initial Synchronization Method for Robust DGPS Reference Stations in Noisy Environment (잡음환경에 강인한 DGPS 기준국을 위한 GPS 초기동기 방법)

  • Park Jeong-Yeol;Park Sang-Hyun;Sin Jae-Ho
    • Journal of Navigation and Port Research
    • /
    • v.30 no.5 s.111
    • /
    • pp.343-349
    • /
    • 2006
  • In order to enhance the robustness against noisy environment, the previous GPS initial synchronization method of DGPS reference stations adopts not only the coherent integration method but also the non-coherent integration method. However the previous GPS initial synchronization method muses the non-coherent integration loss, which is a dominant factor among the signal acquisition losses in noisy environment. And the non-coherent integration loss increases with the strength of noise signal. In this paper, a novel GPS initial synchronization method is proposed for robust DGPS reference stations in noisy environment. This paper presents that the proposed GPS initial synchronization method suppresses the non-coherent acquisition loss. Furthermore, with regard to the mean acquisition time, it is shown that the number of the search cells of the proposed GPS initial synchronization method is much smaller than that of the previous GPS initial synchronization method Finally, through the simulation by the GPS simulator, it is seen that the GPS signal of nigh signal-to-noise ratio can be acquired under increased noise floor using the proposed GPS initial synchronization method.

Development of RF IC, Signal Processing IC and Software for Portable GPS Receiver (휴대 GPS 수신기용 RF IC, 신호처리 IC 및 소프트웨어 개발)

  • Ryum, Byung R.;Koo, Kyung Heon;Song, Ho Jun;Jee, Gyu In
    • Journal of Advanced Navigation Technology
    • /
    • v.1 no.1
    • /
    • pp.23-34
    • /
    • 1997
  • A multi-channel digital GPS receiver has been developed including a RF-to-IF engine (engine 1), a digital signal processing engine (engine 2) with a microprocessor interfacing, and a navigation software. A high speed SiGe heterojunction bipolar transistor (HBT) as a active device has been mounted on chip-on-board (COB) type hybrid ICs such as LNA, mixer, and VCO in RF front-end of the engine 1 board. A 6-channel digital correlator together with a real-time clock and a microprocessor interface has been realized using an Altera Flex 10K FPGA as well as ASIC technology. Navigation software controlling the correlator for GPS signal tracking, retrieval and storing a message retrieval, and position calculation has been implemented. The GPS receiver was tested using a single channel STR2770 simulator. Successful navigation message retrieval and position determination was confirmed.

  • PDF

A Study on the Implementation and Performance Analysis of Software Based GPS L1 and Galileo E1/E5a Signal Processing (소프트웨어 기반의 GPS L1 및 갈릴레오 E1/E5a 신호 처리 구현 및 성능에 관한 연구)

  • Sin, Cheon-Sig;Lee, Sang-Uk;Yoon, Dong-Won;Kim, Jae-Hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.319-326
    • /
    • 2009
  • In this paper, the key technologies of Navigation receiver for GNSS sensor station are presented as a development result of a GNSS ground station in ETRI. A wide-band antenna and RF/IF components and SW signal processing unit to cover the GPS and Galileo signals for GNSS receiver are developed and its performance is verified by using GPS live signal and GNSS RF signal simulator from SpirentTM. We also gather GIOVE-A signal by using H/W antenna and RF/IF units in IF-level as sampling frequency and bit number, 112MHz and 8bits, respectively by using the developed wide-band antenna and RF/IF components. Data acquisition is done by using commercial data acquisition device from National Instrument TM. The gathered data is fed into SW receiver to process Galileo E1 to verify Galileo signal processing by Galileo live signal from GIOVE-A.

  • PDF