• Title/Summary/Keyword: GPS Sensor correction

Search Result 33, Processing Time 0.034 seconds

Database based Global Positioning System Correction (데이터베이스 기반 GPS 위치 보정 시스템)

  • Moon, Jun-Ho;Choi, Hyuk-Doo;Park, Nam-Hun;Kim, Chong-Hui;Park, Yong-Woon;Kim, Eun-Tai
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.205-215
    • /
    • 2012
  • A GPS sensor is widely used in many areas such as navigation, or air traffic control. Particularly, the car navigation system is equipped with GPS sensor for locational information. However, when a car goes through a tunnel, forest, or built-up area, GPS receiver cannot get the enough number of satellite signals. In these situations, a GPS receiver does not reliably work. A GPS error can be formulated by sum of bias error and sensor noise. The bias error is generated by the geometric arrangement of satellites and sensor noise error is generated by the corrupted signal noise of receiver. To enhance GPS sensor accuracy, these two kinds of errors have to be removed. In this research, we make the road database which includes Road Database File (RDF). RDF includes road information such as road connection, road condition, coordinates of roads, lanes, and stop lines. Among the information, we use the stop line coordinates as a feature point to correct the GPS bias error. If the relative distance and angle of a stop line from a car are detected and the detected stop line can be associated with one of the stop lines in the database, we can measure the bias error and correct the car's location. To remove the other GPS error, sensor noise, the Kalman filter algorithm is used. Additionally, using the RDF, we can get the information of the road where the car belongs. It can be used to help the GPS correction algorithm or to give useful information to users.

Accuracy Analysis of GPS-derived Precipitable Water Vapor According to Interpolation Methods of Meteorological Data (기상자료 보간 방법에 의한 GPS기반 가강수량 산출 정확도 분석)

  • Kim, Du-Sik;Won, Ji-Hye;Kim, Hye-In;Kim, Kyeong-Hui;Park, Kwan-Dong
    • Spatial Information Research
    • /
    • v.18 no.4
    • /
    • pp.33-41
    • /
    • 2010
  • Approximately 100 permanent GPS stations are currently operational in Korea. However, only 10 sites have their own weather sensors connected directly to the GPS receiver. Thus. calculation of meteorological data through interpolation of AWS data are needed to determine precipitable water vapors at a specific GPS station without a meteorological sensor. This study analyzed the accuracy of two meteorological data interpolation methods called reverse sea level correction and kriging. As a result, the root-mean square-error of reverse sea level correction were seven times more accurate in pressure and twice more accurate in temperature than the kriging method. For the analysis of PWV accuracy, we calculated GPS PWV during the summer season in :2008 by using GPS observation data and interpolated meteorological data by reverse sea level correction. And, we compared GPS PWV s based on interpolated meteorological data with those from radiosonde observations and GPS PWV s based on onsite GPS meteorological sensor measurements. As a result, the accuracy of GPS PWV s from our interpolated meteorological data was within the required operational accuracy of 3mm.

Development of a LoRaWAN-based Real-time Ocean-current Draft Observation System using a multi-GPS Triangulation Method Correction Algorithm (다중 GPS 삼각측량보정법을 이용한 LoRaWAN기반 실시간 해류관측시스템 개발)

  • Kang, Young-Gwan;Lee, Woo-Jin;Yim, Jae-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.64-68
    • /
    • 2022
  • Herein, we propose a LoRaWAN-based small draft system that can measure the ocean current flow (speed, direction, and distance) in real time at the request of the Coast Guard to develop a device that can promptly find survivors at sea. This system has been implemented and verified in the early stages of rescue after maritime vessel accidents, which are frequent. GPS signals often transmit considerable errors, so correction algorithms using the improved triangulation method algorithm are required to accurately indicate the direction of currents in real time. This paper is structured in the following manner. The introduction section elucidates rescue activities in the case of a maritime accident. Chapter 2 explains the characteristics and main parameters of the GPS surveying technique and LoRaWAN communication, which are related studies. It explains and expands on the critical distance error correction algorithm for GPS signals and its improvement. Chapter 3 discusses the design and analysis of small draft buoys. Chapter 4 presents the testing and validation of the implemented system in both onshore and offshore environments. Finally, Section 5 concludes the study with the expected impact and effects in the future.

Performance Improvement of GPS/DR Car Navigation System Using Vehicle Movement Information (차량 움직임 정보를 이용한 GPS/DR 차량항법시스템 성능향상)

  • Song, Jong-Hwa;Kim, Kwang-Hoon;Jee, Gyu-In;Lee, Yeon-Seok
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.55-63
    • /
    • 2010
  • This paper describes performance improvement of GPS/DR Integration system using area decision algorithm and vehicle movement information. In GPS signal blockage area, i.e., tunnel and underground parking area, DR sensor errors are accumulated and navigation solution is gradually diverged. We use the car movement information according to moving area to correct the DR sensor error. Also, vehicle movement is decided as stop, straight line, turn and movement changing region through DR sensor data analysis. The car experiment is performed to verify the supposed method. The results show that supposed method provides small position and heading error than previous method.

Particle filter for Correction of GPS location data of a mobile robot (이동로봇의 GPS위치 정보 보정을 위한 파티클 필터 방법)

  • Noh, Sung-Woo;Kim, Tae-Gyun;Ko, Nak-Yong;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.2
    • /
    • pp.381-389
    • /
    • 2012
  • This paper proposes a method which corrects location data of GPS for navigation of outdoor mobile robot. The method uses a Bayesian filter approach called the particle filter(PF). The method iterates two procedures: prediction and correction. The prediction procedure calculates robot location based on translational and rotational velocity data given by the robot command. It incorporates uncertainty into the predicted robot location by adding uncertainty to translational and rotational velocity command. Using the sensor characteristics of the GPS, the belief that a particle assumes true location of the robot is calculated. The resampling from the particles based on the belief constitutes the correction procedure. Since usual GPS data includes abrupt and random noise, the robot motion command based on the GPS data suffers from sudden and unexpected change, resulting in jerky robot motion. The PF reduces corruption on the GPS data and prevents unexpected location error. The proposed method is used for navigation of a mobile robot in the 2011 Robot Outdoor Navigation Competition, which was held at Gwangju on the 16-th August 2011. The method restricted the robot location error below 0.5m along the navigation of 300m length.

GPS/INS Integration using Fuzzy-based Kalman Filtering

  • Lim, Jung-Hyun;Ju, Gwang-Hyeok;Yoo, Chang-Sun;Hong, Sung-Kyung;Kwon, Tae-Yong;Ahn, Iee-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.984-989
    • /
    • 2003
  • The integrated global position system (GPS) and inertial navigation system (INS) has been considered as a cost-effective way of providing an accurate and reliable navigation system for civil and military system. Even the integration of a navigation sensor as a supporting device requires the development of non-traditional approaches and algorithms. The objective of this paper is to assess the feasibility of integrated with GPS and INS information, to provide the navigation capability for long term accuracy of the integrated system. Advanced algorithms are used to integrate the GPS and INS sensor data. That is fuzzy inference system based Weighted Extended Kalman Filter(FWEKF) algorithm INS signal corrections to provided an accurate navigation system of the integrated GPS and INS. Repeatedly, these include INS error, calculated platform corrections using GPS outputs, velocity corrections, position correction and error model estimation for prediction. Therefore, the paper introduces the newly developed technology which is aimed at achieving high accuracy results with integrated system. Finally, in this paper are given the results of simulation tests of the integrated system and the results show very good performance

  • PDF

Bluetooth Smart Ready implementation and RSSI Error Correction using Raspberry (라즈베리파이를 활용한 블루투스 Smart Ready 구현 및 RSSI 오차 보정)

  • Lee, Sung Jin;Moon, Sang Ho
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.280-286
    • /
    • 2022
  • In order to efficiently collect data, it is essential to locate the facilities and analyze the movement data. The current technology for location collection can collect data using a GPS sensor, but GPS has a strong straightness and low diffraction and reflectance, making it difficult for indoor positioning. In the case of indoor positioning, the location is determined by using wireless network technologies such as Wifi, but there is a problem with low accuracy as the error range reaches 20 to 30 m. In this paper, using BLE 4.2 built in Raspberry Pi, we implement Bluetooth Smart Ready. In detail, a beacon was produced for Advertise, and an experiment was conducted to support the serial port for data transmission/reception. In addition, advertise mode and connection mode were implemented at the same time, and a 3-count gradual algorithm and a quadrangular positioning algorithm were implemented for Bluetooth RSSI error correction. As a result of the experiment, the average error was improved compared to the first correction, and the error rate was also improved compared to before the correction, confirming that the error rate for position measurement was significantly improved.

LiDAR Static Obstacle Map based Position Correction Algorithm for Urban Autonomous Driving (도심 자율주행을 위한 라이다 정지 장애물 지도 기반 위치 보정 알고리즘)

  • Noh, Hanseok;Lee, Hyunsung;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents LiDAR static obstacle map based vehicle position correction algorithm for urban autonomous driving. Real Time Kinematic (RTK) GPS is commonly used in highway automated vehicle systems. For urban automated vehicle systems, RTK GPS have some trouble in shaded area. Therefore, this paper represents a method to estimate the position of the host vehicle using AVM camera, front camera, LiDAR and low-cost GPS based on Extended Kalman Filter (EKF). Static obstacle map (STOM) is constructed only with static object based on Bayesian rule. To run the algorithm, HD map and Static obstacle reference map (STORM) must be prepared in advance. STORM is constructed by accumulating and voxelizing the static obstacle map (STOM). The algorithm consists of three main process. The first process is to acquire sensor data from low-cost GPS, AVM camera, front camera, and LiDAR. Second, low-cost GPS data is used to define initial point. Third, AVM camera, front camera, LiDAR point cloud matching to HD map and STORM is conducted using Normal Distribution Transformation (NDT) method. Third, position of the host vehicle position is corrected based on the Extended Kalman Filter (EKF).The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment and showed better performance than only lane-detection algorithm. It is expected to be more robust and accurate than raw lidar point cloud matching algorithm in autonomous driving.

Performance enhancement of launch vehicle tracking using GPS-based multiple radar bias estimation and sensor fusion (GPS 기반 추적레이더 실시간 바이어스 추정 및 비동기 정보융합을 통한 발사체 추적 성능 개선)

  • Song, Ha-Ryong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.6
    • /
    • pp.47-56
    • /
    • 2015
  • In the multi-sensor system, sensor registration errors such as a sensor bias must be corrected so that the individual sensor data are expressed in a common reference frame. If registration process is not properly executed, large tracking errors or formation of multiple track on the same target can be occured. Especially for launch vehicle tracking system, each multiple observation lies on the same reference frame and then fused trajectory can be the best track for slaving data. Hence, this paper describes an on-line bias estimation/correction and asynchronous sensor fusion for launch vehicle tracking. The bias estimation architecture is designed based on pseudo bias measurement which derived from error observation between GPS and radar measurements. Then, asynchronous sensor fusion is adapted to enhance tracking performance.

On-line Real Time Soil Sensor

  • Shibusawa, S.
    • Agricultural and Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.28-33
    • /
    • 2003
  • Achievements in the real-time soil spectro-photometer are: an improved soil penetrator to ensure a uniform soil surface under high speed conditions, real-time collecting of underground soil reflectance, getting underground soil color images, use of a RTK-GPS, and all units are arranged for compactness. With the soil spectrophotometer, field experiments were conducted in a 0.5 ha paddy field. With the original reflectance, averaging and multiple scatter correction, Kubelka-Munk (KM) transformation as soil absorption, its 1st and 2nd derivatives were calculated. When the spectra was highly correlated with the soil parameters, stepwise regression analysis was conducted. Results include the best prediction models for moisture, soil organic matter (SOM), nitrate nitrogen (NO$_3$-N), pH and electric conductivity (EC), and soil maps obtained by block kriging analysis.

  • PDF