• Title/Summary/Keyword: GPS Receiver

Search Result 651, Processing Time 0.033 seconds

Performance Analysis of the GPS Receiver under High Acceleration and Jerk Environments

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Choi, Hyung-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.279-283
    • /
    • 2006
  • The GPS receiver developed by KARI for the satellite launch vehicle should operate under severe dynamic environments such as high acceleration and jerk. Several terrestrial tests including the outdoor centrifuge test are planed in order to verify performances of the GPS receiver before flight. This paper deals with preliminary test results of the GPS receiver using a GPS signal generator before the centrifuge test that is a performance test of the GPS receiver using live GPS satellite signals. Test methods of the GPS receiver for the satellite launch vehicle under high centripetal acceleration and jerk utilizing a GPS signal generator are described. The simulation results are also analyzed in this paper.

  • PDF

A GPS Receiver Structure for Multi-beamforming (다중 빔 형성을 위한 GPS 수신기 구조)

  • Lee, Geon-Woo;Lim, Deok-Won;Lee, Chang-Won;Park, Chan-Sik;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.182-190
    • /
    • 2009
  • GPS receivers can be disrupted by intentional or unintentional jamming, then it is unable to receive GPS signals and it is impossible to get the correct navigation results. Anti-jamming schemes using array antennas are being studied well due to high performance of those, and the efforts to apply them to GPS receiver are also being done. A GPS receiver structure for a multiple beam-forming scheme among those schemes has been proposed in this paper, and the performance is also compared with that using a general GPS receiver structure. For a general GPS receiver structure, each satellite signal which is formed by a beam-forming scheme is summed to be processed in a part of digital signal processing. For a proposed GPS receiver structure, however, each satellite signal is respectively processed by a designated channel in a part of digital signal processing. Finally, it is confirmed that the proposed GPS receiver structure is superior to a general GPS receiver structure in a point of the carrier to noise power ratio and the navigation accuracy using a software platform.

TEST AND PERFORMANCE ANALYSIS METHODS OF LOW EARTH ORBIT GPS RECEIVER (지구저궤도 GPS 수신기의 시험 및 성능 분석 방법)

  • Chung Dae-Won;Lee Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.259-268
    • /
    • 2006
  • The use of GPS receiver at outer space becomes common in low earth orbit. Recently most of satellites use GPS receiver as navigation solution for finding satellite position. However, the accuracy of navigation solution acquiring directly from GPS receiver is not enough in satellite application such as map generation. Post-processing concepts such as Precise Orbit Determination (POD) are recently applied to satellite data processing to improve satellite position accuracy. The POD uses raw measurement data instead of navigation solution of GPS receiver. The performance of raw measurement data depends on raw measurement data accuracy and tracking loop algorithm of GPS receiver. In this paper, a method for evaluating performance of raw measurement data is suggested. Test environment and procedure of the low earth orbit satellite acquiring for navigation solution of GPS receiver and navigation solution of POD are described. In addition, accuracy on navigation solution of GPS receiver, raw measurement data, and navigation solution of POD are analyzed. The proposed method can be applicable to general low earth orbit satellite.

Performance Analysis of the GPS Receiver System under Electromagnetic Test of the KSL V-I Upper-stage (KSLV-I 상단조립체의 전자파시험에서 GPS 수신기 시스템의 성능분석)

  • Moon, Ji-Hyeon;Kwon, Byung-Moon;Shin, Yong-Sul;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.161-169
    • /
    • 2008
  • This paper introduces test configuration and operation method for the GPS receiver system under electromagnetic test of KSLV-I upper-stage as a system qualification level and describes performance analysis of the test results. The GPS receiver system has clearly passed the electromagnetic test specifications of component level which is based on MIL-STD-461E through several design changes. Under electromagnetic test as a system qualification level, the GPS receiver system normally operates in spite of electromagnetic interferences with other systems. Performance of the GPS receiver system is also, not degraded on the condition of electromagnetic field incidence and electrostatic discharge. The KSLV-I GPS receiver system, as a result, is verified on the electromagnetic condition of the KSLV-I upper-stage.

  • PDF

The Hardware Design for GPS Data Acquisition Circuit (GPS 데이타 수신을 위한 하드웨어 설계)

  • 정영태;김민호;김명돈;홍성일;변건식;정만영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.10
    • /
    • pp.8-17
    • /
    • 1995
  • Recently, in a variety of the application fields, it is interested in GPS receiver as the use of GPS(Global Positioning System) is increased. In this paer, we propose that a type of new receiver of a simple structure as GPS data receiver. This proposed receiver consists of RF stage, local C/A(Coarse/Acquisition) code generator, C/A code correlator, data demodulator and microprocessor controller as a GPS single channel data receiver using the L1 carrier . It is confirmed that the proposed receiver operates well as GPS raw data receiver through experiment.

  • PDF

GPS Data Application of the KOMPSAT-2

  • Chung, Dae-Won;Kwon, Ki-Ho;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.337-342
    • /
    • 2006
  • The use of GPS receiver at outer space becomes common in low earth orbit. The KOrea Multi-Purpose SATellite-1 (KOMPSAT-1) which was launched in December 1999 has used GPS receiver's navigation solution to perform the Orbit Determination (OD) in the ground. At the circumstance of using only one ground station, the Orbit Determination using GPS receiver is good method. Because the accuracy of navigation solution acquiring directly from GPS receiver is not enough in satellite application such as map generation, post-processing concepts such as the Precise Orbit Determination (POD) are applied to satellite data processing to improve satellite position accuracy. The POD uses GPS receiver's raw measurement data instead of GPS receiver's navigation solution. The KOrea Multi- Purpose SATellite-2 (KOMPSAT-2) system newly uses the POD technique for large scale map generation. The satellite was launched in the end of July 2006. The satellite sends high resolution images in panchromatic band and multi-spectral bands to the ground. The satellite system uses GPS receivers as source of time synchronization and command reference in the satellite, provider of navigation solution for the OD, and provider of raw measurement data for the POD. In this paper, mechanical configuration and operations of the GPS receiver will be presented. The GPS data characteristics of the satellite such as time synchronization, command reference, the OD using GPS receiver's navigation solution, and the POD using GPS receiver's raw measurement data will be presented and analyzed. The enhancement of performance compared with it of the previous satellite will also be analyzed.

  • PDF

Development of a GPS Receiver System for Satellite Launch Vehicles (위성발사체용 GPS 수신기 시스템의 개발)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Shin, Yong-Sul;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.929-937
    • /
    • 2008
  • A GPS receiver system utilized on satellite launch vehicles should operate normally under harsh environments as well as high-dynamic conditions. The GPS receiver system to use for range safety of KSLV(Korea Space Launch Vehicle)-I that is the first satellite launch vehicle developed by KARI(Korea Aerospace Research Institute) has been confirmed to survive under the environment of the launcher through extensive terrestrial tests including humidity, high and low temperatures, vacuum, sinusoidal and random vibrations, shocks, acceleration, EMI/EMC(Electromagnetic Interference/ Electromagnetic Compatibility), etc. Several performance tests have been also carried out in order to evaluate tracking capability and accuracy of the GPS receiver under high-dynamic conditions using a GPS signal simulator. Some lessons-learned during development of the GPS receiver system and its special characteristics compared with COTS(Commercial-Off-The-Shelf) GPS receiver systems are described in this paper.

A Study on the Present Status of Use and Development Plan of GPS Receiver in Naval Vessels (해군함정의 GPS 수신기 활용현황과 발전방안에 관한 연구)

  • Lim Bong-Taeck
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.685-692
    • /
    • 2005
  • In this study, it is surveyed and analyzed under the condition of developing GPS receiver that the present status of use and the precision of GPS receiver installed in naval vessels. Throughout interview and questionnaire with the workers in naval vessels, reliability and utilization of GPS receiver are verified. In conclusion, it is suggested that the development of GPS receiver system as well as navigation methods in naval vessels. The result of this study is as follows. Though the workers in naval vessels regard the accuracy of GPS receiver position as the fix by geographical navigation method. However, it is confirmed that its practical usage is when it is difficult to obtain the fix by geographical navigation method or R/D position or for verification. The suggested plans to develop the navigation methods from naval vessels standpoint are designing a parallel systems and introducing the GPS receiver system that functions well and is linked to the electronic navigation chart.

A Study on Effectiveness Analysis of the GPS Receiver by the Narrowband interference signals (협대역 간섭신호에 의한 GPS 수신기 영향 분석)

  • Kim Jun-O
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.48-56
    • /
    • 2004
  • This paper presents the GPS receiver's inherent interference effectiveness based on the receiver's internal processing gain. This research is to verify the weakness of the GPS satellite signals and evaluate the receiver's vulnerability in an interference situation. The experiment for the narrow band interference effectiveness for the L1 C/A code GPS receiver has been performed by using the Spirent GSS4765 jamming simulator. After analyzing the experimental result, it is compared with the calculated J/S value of the two different L1 C/A code GPS receivers. By the above result, the narrowband jamming effectiveness of the each jamming source and the jamming margin for the each receiver are to be analyzed in detail. Finally, we could utilize the result to analyze the jamming effectiveness on the GNSS receiver.

Development of Software GPS Receiver for GEO Satellites Using Weak Signal Receiver Algorithm (미약신호 수신 알고리즘을 활용한 정지궤도위성 탑재용 소프트웨어 GPS 수신기 개발)

  • Kim, Chong-Won;Kim, Ghang-Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.312-318
    • /
    • 2014
  • The altitudes of GEO satellites are higher than those of GPS satellites. Therefore the visibility and the received power of GPS signals are totally different from those of the users near the Earth's surface. In this study, we analyzed the visibility of GPS signals received on GEO satellites. And we also developed a software GPS receiver that works on GEO satellites using CCMDB algorithm which is a weak signal receiver algorithm. GPS signals received on a GEO satellite are generated by a commercial hardware GPS simulator and used for the verification of the developed software GPS receiver. The mean 3D position and velocity error are calculated as 165.636 m and 0.5081 m/s.