• Title/Summary/Keyword: GPS Navigation Solution

Search Result 110, Processing Time 0.025 seconds

Performance Testing of Integrated Strapdwon INS and GPS

  • Lee, Sang-Joog;Yoo, Chang-Sun;Shim, Yo-Han;Kim, Jong-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.67-77
    • /
    • 2001
  • In recent navigation system, the profitable solution is to integrate the GPS and Stapdwon INS (SDINS) system and its integration allows compensation for shortcomings of each system. This paper describes the hardware preparation and presents the test results obtained from the automobile test of the developed system. The automobile tests was conducted with two kinds of inertial sensors and GPS receivers : short range and middle range test, to verify and evaluate the performance of the integrated navigation system. The reference of position is given by the Differential GPS(DGPS) which has cm-level accuracy to compare the accuracy of system. Kalman filtering is used for integrating GPS and SDINS and this filter effectively allows the long-term stability of GPS to correct and decrease the time deviation error of SDINS.

  • PDF

Application of the Differential GPS method for Navigation and Acquisition of the Geo-Spatial Information (지형공간정보의 획득과 항법을 위한 DGPS기법의 응용)

  • ;Alfred Leick
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.101-110
    • /
    • 2000
  • This study focuses on examination of the availability and effectiveness about application of the differential GPS methods for navigation and acquisition of the geo-spatial information. For this, the algorithms related to a navigation solution and differential GPS were implemented in MATLAB code, a number of software simulations on test model were carried out to assess its performance, comparing the results with those obtained from the commercial software. Expecially, the results coming from tracking test on test model of the OO's WADGPS which is the commercial real-time satellite-based augmentation system via geostationary satellite (GEOs), which has been investigated with those from the above GPS methods. And also, the accuracy of absolute positioning by Navigation solution and WADGPS before and after SA-off has been compared. The above results show that DGPS methods are very reliable and efficient methods for acquisition of the geo-spatial information.

  • PDF

Modified Extended Kalman Filter Technique for Car Navigation in Urban Environment with Limited GPS Visibility (GPS 위성의 가시성이 제한을 받는 도심지 환경하에서의 차량항법을 위한 변형된 확장칼만필터기법)

  • Won, J.H.;Lee, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.970-973
    • /
    • 1996
  • In this paper, Modified GPS Kalman filter algorithms which allow user to estimate its position when the number of visible GPS satellites becomes less than four are presented. They are derived using the previous estimation of altitude and clock bias. Thus, it is possible to estimate 3-dimensional user position even when only two GPS satellites are visible. The algorithms are ideally suited to car navigation in urban areas where lack of GPS visibility is the major problem because of the frequent blockage of the GPS signals by tall buildings and other structures. Simulation results in this paper show that modified GPS Kalman filter provide better performances than a general GPS Kalman filter or any other instantaneous GPS solution algorithm, especially in the case which the number of visible GPS satellites becomes less than four.

  • PDF

Walking/Non-walking and Indoor/Outdoor Cognitive-based PDR/GPS/WiFi Integrated Pedestrian Navigation for Smartphones

  • Eui Yeon Cho;Jae Uk Kwon;Seong Yun Cho;JaeJun Yoo;Seonghun Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.399-408
    • /
    • 2023
  • In this paper, we propose a solution that enables continuous indoor/outdoor positioning of smartphone users through the integration of Pedestrian Dead Reckoning (PDR) and GPS/WiFi signals. Considering that accurate step detection affects the accuracy of PDR, we propose a Deep Neural Network (DNN)-based technology to distinguish between walking and non-walking signals such as walking in place. Furthermore, in order to integrate PDR with GPS and WiFi signals, a technique is used to select a proper measurement by distinguishing between indoor/outdoor environments based on GPS Dilution of Precision (DOP) information. In addition, we propose a technology to adaptively change the measurement error covariance matrix by detecting measurement outliers that mainly occur in the indoor/outdoor transition section through a residual-based χ2 test. It is verified through experiments on a testbed that these technologies significantly improve the performance of PDR and PDR/GPS/WiFi fingerprinting-based integrated pedestrian navigation.

An Integrated Navigation System Combining INS and Ultrasonic-Speedometer to Overcome GPS-denied Area (GPS 음영 지역 극복을 위한 INS/초음파 속도계 결합 항법 시스템 설계)

  • Choi, Bu-Sung;Yoo, Won-Jae;Kim, La-Woo;Lee, Yu-Dam;Lee, Hyung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.228-236
    • /
    • 2019
  • Recently, multi-sensor integration techniques have been actively studied to obtain reliable and accurate navigation solution in GPS (Global Positioning System)-denied harsh environments such as urban canyons, tunnels, and underground roads. In this paper, we propose a low-cost ultrasonic-speedometer utilizing the characteristics of the ultrasonic propagation. An efficient integrated INS (inertial navigation system)/ultrasonic-speedometer navigation system is also proposed to improve the accuracy of positioning in GPS-denied environments. To evaluate the proposed system, car experiments with field-collected measurements were performed. By the experiment results, it was confirmed that the proposed INS/ultrasonic-speedometer system bounds the positioning error growth effectively even though GPS signal is blocked more than 10 seconds and a low-cost MEMS IMU (micro electro mechanical systems inertial measurement unit) is utilized.

A Study on the DOP Improvement using Hybrid Satellite Navigation System (위성항법 통합시스템을 이용한 DOP 향상에 관한 연구)

  • Choi, Chang-Mook;Ko, Kwang-Soob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.2045-2049
    • /
    • 2011
  • In this paper, the DOP improvement was studied for the solution to an intentional jamming and the increase of position accuracy by selecting preferred satellites with hybrid satellite navigation system(both GPS and GLONASS). As a result of data analysis, the increases in 0.3 ~ 0.8 GDOP, 0.2 ~ 0.6 PDOP, and 0.1 ~0.3 TDOP were acquired by using hybrid satellite navigation system instead of GPS-only.

Performance Enhancement of Low-Cost Land Navigation System for Location-Based Service

  • Cho, Seong-Yun;Choi, Wan-Sik
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.131-144
    • /
    • 2006
  • This work demonstrates a dead-reckoning (DR) scheme for a low-cost land navigation system and a DR/GPS system design using the sigma point Kalman filter (SPKF). T hrough an observability analysis and some simulations, it is shown that the performances of a stand-alone DR system and DR/GPS system can be improved by employing the proposed DR scheme and SPKF. By using the designed DR scheme and filter, the stand-alone DR system does not have any undetectable errors occurring on the curve trajectory. And the DR/GPS system can provide a stable and seamless navigational solution even in the case where the initial heading estimation error is large, such as 160 degrees, or when the GPS signal is unavailable due to tunnels, buildings, and so on. Simulation results indicate a satisfactory performance of the proposed system.

  • PDF

Sensor Fusion and Error Compensation Algorithm for Pedestrian Navigation System

  • Cho, Seong-Yun;Park, Chan-Gook;Yim, Hwa-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1001-1006
    • /
    • 2003
  • This paper presents the pedestrian navigation algorithm and the error compensation filter. The pedestrian navigation system (PNS) consists of the MEMS inertial sensors, the fluxgate, and the small-size GPS receiver. PNS calculates the navigational information using the signal patterns of the accelerometers. And the navigational information is completed by integration of the patterns, the fluxgate, and the GPS information. In general, PNS can provide the better solution than the low-cost inertial navigation system.

  • PDF

Development of Correction Algorithm for Integrated Strapdown INS/GPS by using Kalman Filter

  • Lee, Sang-Jong;Naumenko, C.;Kim, Jong-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.55-66
    • /
    • 2001
  • The Global Positioning System(GPS) and the Strapdown Inertial Navigation System(SDINS) techniques have been widely utilized in many applications. However each system has its own weak point when used in a stand-alone mode. SDINS suffers from fast error accumulation dependent on an operating time while GPS has problem of cycle slips and just provides low update rate. The best solution is to integrate the GPS and SDINS system and its integration allows compensation for each shortcomings. This paper, first, is to define and derive error equations of integrated SDINS/GPS system before it will be applied on a real hardware system with gyro, accelerometer and GPS receiver. Second, the accuracy, availability and performance of this mechanization are verified on the simulation study.

  • PDF

Analysis of Pseudolite Augmentation for Vessel Berthing

  • Cho, Deuk-Jae;Park, Sang-Hyun;Suh, Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.15-19
    • /
    • 2006
  • GPS has been increasingly exploited to provide positioning and navigation solutions for a variety of applications. In vessel berthing application, however, there are stringent requirements in terms of positioning accuracy, availability and integrity that cannot be satisfied by GPS alone. This is because the performance of satellite-based positioning and navigation systems are heavily dependent on both the number and the geometric distribution of satellite tracked by receivers. Due to the limited number of GPS satellites, a sufficient number of ‘visible’ satellites cannot be sometimes guaranteed. This paper discusses some issues associated with the implementation of ground-based pseudolite augmentation for vessel berthing. Pseudolite means small transmitter that transmits GPS-like signals in local area. Actually, pseudolite can play three different roles in GPS augmentation scheme, depending on the operational conditions. Firstly, in the case of kinematic GPS operation where there are no signal blockages, and more than five satellites are available, additional pseudolites strengthen the GPS satellite-pseudolite geometry, and more accurate and reliable positioning solution can be achieved. Secondly, in the case when there are adverse GPS operational environments in which the number of tracked satellites is less than four, pseudolites can complement the GPS signals. In the third case, GPS signals are completely unavailable, such as when operated indoor. In such cases the pseudolites can replace the satellite constellation. However, the first role will be considered in this paper, since more than four satellite signals can usually be tracked in most marine applications. This paper presents that the pseudolite-augmented precise positioning system can provides continuous centimeter-level positioning accuracy through comparison analysis of RDOP simulation result of the GPS satellite constellation and the pseudolite-augmented GPS satellite constellation.

  • PDF