• Title/Summary/Keyword: GPS L5

Search Result 105, Processing Time 0.025 seconds

GPS L5 Signal Tracking Scheme Using GPS L1 Signal Tracking Results (GPS L1 신호추적 결과를 이용한 GPS L5 신호추적 기법)

  • Joo, Inone;Lee, Sanguk
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.99-104
    • /
    • 2012
  • The United States will proceed with the effort to modernize the GPS system, and one of its main content is to provide L5 signal. L5 will be transmitted in a radio band reserved exclusively for aviation safety services. And, L5, in combination with L1, will improve the position accuracy via ionospheric correction and robustness via signal redundancy. However, The acquisition processing time of L5 takes longer than that of L1 as the code length of L5 is 10 times longer than that of L1. To reduce this acquisition processing time, a higher number of correlators in the aquisition module should be used. However, there is a problem that this causes increase in the complexity of the correlator configuration and the computation power. So, in this paper, we propose L5 signal tracking scheme using tracking results in the GPS L1/L5 receiver. The proposed scheme could reduce the hardware complexity as the GPS L5 signal acquisition module is not needed, and provide fast and stable tracking of L5 signal by aiding L1 tracking results such as PRN, the code phase synchronization, and the Doppler frequency. The feasibility of the proposed scheme is demonstrated through simulation results.

GPS L5 Acquisition Schemes for Rapid Code Phase Search and Fine Doppler Determination (GPS L5 신호에서 신속한 코드위상 재검색 및 정밀 도플러 결정 기법)

  • Joo, In-One;Choi, Seung-Hyun;Kim, Jae-Hyun;Shin, Chun-Sik;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.4
    • /
    • pp.17-24
    • /
    • 2009
  • According to the GPS modernization, L5 is the third civilian GPS signal, broadcasts in a radio band reserved exclusively for aviation safety services. However, as the code length of GPS L5 is ten times longer than that of GPS L1, the acquisition processing time in GPS L5 takes longer than that of L1. This characteristics make the code phase detected initially change and cause the tracking loop to unlock. In order to overcome this problem, this paper proposes L5 acquisition schemes for the rapid code phase re-search and the fine doppler determination. The feasibility of the proposed scheme is demonstrated through the simulation results.

  • PDF

Design of a Adaptive Code Tracking Loop for GPS L1/L2C/L5 Receivers (GPS L1/L2C/L5 수신기를 위한 적응 코드추적루프 설계)

  • Choi, Heon-Ho;Lim, Deok-Won;Lee, Sang-Uk;Kim, Ji-Hoon;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.283-288
    • /
    • 2011
  • In this paper, an adaptive signal tracking loop for a GPS L1/L2C/L5 receiver is designed. The design parameters is adjusted according to the receiver's operating conditions such as the signal strength and the receiver dynamics by using the different characteristics of GPS L1, L2C and L5 signal. Simulation results show that the tracking accuracy of the proposed signal tracking loop is better than those of L1, L2C and L5 only signal tracking loop.

Design of Dual-Band GPS Array Antenna Using In-Direct Feeding Pad (간접급전 패드를 이용한 이중 대역 GPS 배열 안테나 설계)

  • Kang, Seung-Seok;Seo, Seung-Mo;Byun, Gangil;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.355-365
    • /
    • 2017
  • In this paper, we propose the design of a dual-band GPS antenna using in-direct feeding pads. The antenna consists of an upper patch for the GPS L1 band, a lower patch for the GPS L2 band, and two pads on the middle layer for feeding the two radiating patches. A hybrid chip coupler with a phase difference of $90^{\circ}$ is employed at the two feeding ports for achieving a broad circular polarization (CP) bandwidth. The proposed antenna shows bore-sight gains of 3.0 dBic(L1) and 5.1 dBic(L2), and axial ratios of 3.3 dB(L1) and 0.3 dB(L2) by measurement. The active element patterns of the fabricated array with 7 elements show bore-sight gains of -0.4 dBic (L1) and -2.4 dBic(L2), respectively. It proves that the proposed antenna structure is suitable for use in GPS array applications.

A Design of Dual-band Microstrip Antenna Loading Inverted-L-shaped Parasitic Elements Vertically at Radiation Apertures for GPS Applications (방사개구면에 역 L형 기생소자를 세운 GPS용 이중대역 마이크로스트립 안테나 설계)

  • Choi, Yoon-Seon;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.5
    • /
    • pp.38-43
    • /
    • 2015
  • In this paper, we present novel dual-band microstrip antennas using inverted-L-shaped parasitic elements vertically at radiation apertures for GPS L1(1.575 GHz) and L2(1.227 GHz) bands. For making dual band which has large interval, the inverted-L-shaped parasitic element was loaded at the radiation aperture of a half-wavelength patch antenna(GPS L1) in opposite direction of the feeding point for receiving the low frequency(GPS L2). The low frequency occurs by perturbation and coupling between the patch and parasitic. Next, due to use circular polarizations at the GPS applications, two inverted-L-shaped parasitic elements were loaded at radiation apertures of each polarizations and the feeding point was moved at diagonal part of the patch. The dimensions of the designed circularly polarized antenna were $88.5{\times}79{\times}10.4mm^3$ ($0.36{\lambda}L{\times}0.32{\lambda}L{\times}0.04{\lambda}L$, ${\lambda}L$ is the free-space wavelength at 1.227 GHz). Measured -10 dB bandwidths were 116.3 MHz(7.4%) and 64.3 MHz(5.2%) at GPS L1 and L2 bands, respectively. All of these cover the respective required system bandwidths. The measured 3 dB axial ratio bandwidths were 11.7 MHz(0.74%) and 14 MHz(1.14%), respectively. Within each of the designed bands, broadside radiation patterns were observed.

Rapid Acquisition of CM and CL Code for GPS L2C Software Receivers

  • Kwon, Keum-Cheol;Shim, Duk-Sun
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.723-730
    • /
    • 2011
  • The GPS modernization program offered a new civil signal on the L2 band, and the first modernized GPS Block IIR satellite was launched in September 2005. Currently, eight GPS Block IIRM satellites and two Block IIF satellites transmit L2C signal. The L2C signal contains two codes of CM and CL that are much longer than the L1 C/A code. Thus, the acquisition of the CM and CL codes takes more time compared with that of L1 C/A code. Under the assumption that the L2C signal is strong enough for detection, this paper suggests rapid acquisition methods for the GPS L2C signals for software receivers and compares its performance with that of other methods.

A Ring VCO Based PLL for Low-Cost, Low-Power Multi-Band GPS Receiver (Ring-VCO를 이용한 멀티밴드 GPS 수신기용 PLL 설계)

  • Kim, Yun-Jin;So, Byeong-Seong;Ko, Jin-Ho;Park, Keun-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.533-534
    • /
    • 2008
  • This paper presents a multi-phase ring VCO for low-cost, low-power GPS receiver. In the RF band used in GPS, L1 band is now in commercial-use and L2,L5 are predicting to be commercial-use soon. Thus Wide band PLL and Cost-effective IC solutions are required for future multi-band GPS receiver that received three types band at once. A new PLL architecture for multi-band GPS application is proposed. Ring VCO is even smaller than LC-VCO and a good alternative for low-cost solution. Proposed multi-phase ring VCO offers wide frequency range covering L1, L2, and L5 band, 20% reduction of area, 23% reduction of PLL power and can generate I/Q without extra I/Q generator.

  • PDF

Error Analysis of Modernized GPS and Galileo Positioning (현대화된 GPS와 Galileo를 이용한 위치 결정에서의 오차해석)

  • Hwang Dong-Hwan;Lee Sang Jeong;Park Chansik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.644-650
    • /
    • 2005
  • The expected positioning accuracies of civil users utilizing modernized GPS and Galileo are derived using the error analysis in this paper. Since, in general, the performance of DLL, PLL and FLL is proportional to chip lengths and wavelengths, the positioning accuracies from various measurements of modernized GPS and Galileo are derived as function of chip length and wavelength. These results are compared with that from GPS Ll measurement. In absolute positioning, compared to GPS C/A code only case, more than 17 times performance improvement is expected when all civil code signals of modernized GPS and Galileo (L1, L2, L5, E1, E5A and E5B) are used. In relative positioning, compared to GPS L1 carrier phase only case, more than 2 times performance improvement is expected when all civil signals of modernized GPS and Calileo are used. Furthermore, the relationship between GDOP and RGDOP in single frequency case is expanded to general case where multiple frequencies and both code and carrier phase measurements are used.

VLBI Type Experimental Observation of GPS

  • Kwak, Young-Hee;Kondo, Tetsuro;Amagai, Jun;Gotoh, Tadahiro;Sasao, Tetsuo;Cho, Jung-Ho;Kim, Tu-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.173-180
    • /
    • 2010
  • As a preparatory study for Global Positioning System-Very Long Baseline Interferometry (GPS-VLBI) hybrid system, we examined if VLBI type observation of the GPS signal is realizable through a test experiment. The test experiment was performed between Kashima and Koganei, Japan, with 110 km baseline. The GPS L1 and L2 signals were received by commercial GPS antennas, down-converted to video-band signals by specially developed GPS down converters, and then sampled by VLBI samplers. The sampled GPS data were recorded as ordinary VLBI data by VLBI recorders. The sampling frequency was 64 MHz and the observation time was 1 minute. The recorded data were correlated by a VLBI correlator. From correlation results, we simultaneously obtained correlation fringes from all 8 satellites above a cut-off elevation which was set to 15 degree. 87.5% of L1 fringes and 12.5% of L2 fringes acquired the Signal to Noise Ratios which are sufficient to achieve the group delay precision of 0.1nsec that is typical in current geodetic VLBI. This result shows that VLBI type observation of GPS satellites will be readily realized in future GPS-VLBI hybrid system.

Design of Software GPS L2 Civil Signal Generator (ICCAS 2003)

  • Seo, Sam-Suk;Cho, Deuk-Jae;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2632-2635
    • /
    • 2003
  • This paper designs a software signal generator for the new GPS L2 civil signal. The CM/CL code and the message structure of L2CS described in GPS ICD PPIRN-200C-007 are used in designing the signal generator. The output of the GPS signal generator is designed as the sampled IF data with the sampling frequency 5.7MHz and stored in the binary data format. By analyzing both the spectrum characteristics of the output signal and the correlation properties of the CM/CL code, the validation of the designed GPS signal generator is shown. It should be mentioned that the modeling of the GPS satellite constellation and the error sources remains for implementing the software space segment of GPS.

  • PDF