• Title/Summary/Keyword: GPS

Search Result 5,450, Processing Time 0.035 seconds

Effect of Shoulder Stabilization Exercise with Pelvic Compression Belt Application on Muscle Activity, Pain and Function of Muscles around Shoulder Joint in Subjects with Round Shoulders (둥근 어깨가 있는 대상자에게 골반 압박 벨트 적용을 동반한 어깨 안정화 운동의 수행이 어깨관절 주위 근육의 근활성도와 통증 및 기능에 미치는 영향)

  • Kim, Chung-Yoo;Lee, Yeon-Seop;Kim, Hyeon-Su
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.4
    • /
    • pp.199-207
    • /
    • 2022
  • Purpose : The purpose of this study is to investigate the effect of shoulder stabilization exercise accompanied by application of a pelvic compression belt on the muscle activity, pain and function of the muscles around the shoulder in subjects with round shoulders. Methods : For the study method, 28 students who were enrolled in K University with a distance of 1 cm or more between the clavicle of the peak and the outer ear path were selected through GPS 400 global postural analysis system measurement. The subjects were randomly assigned to 14 participants in the group wearing a pelvic compression belt and 14 patients in the group not wearing a pelvic compression belt. In all subjects, the muscle activities of the middle trapezius, lower trapezius, and serratus anterior muscles and the shoulder pain disorder index (SPADI) were measured. The intervention was performed 3 times a week for 4 weeks, and the applied intervention was push-up plus and modified prone cobra exercise. The muscle activities of the middle trapezius, lower trapezius, and serratus anterior muscles and SPADI score were compared using dependent t test before and after intervention. Results : In this study, both groups showed that the muscle activity of the middle trapezius, lower trapezius, and serratus anterior significantly increased after the intervention compared to before the intervention. On the other hand, SPADI showed no significant difference. Conclusion : The results of this study showed that muscle activity in the peri-shoulder joint was increased after push-up plus and modified prone cobra exercise in both groups, regardless of whether pelvic compression was applied or not. Therefore, it was found that shoulder stabilization exercise using the pelvic compression belt also contributed to the enhancement of muscle activity in the joints around the shoulder.

Analysis of 3D composited monitoring system using unmanned surface vehicle (무인 원격 이동체를 활용한 3차원 복합 모니터링 기술에 관한 연구)

  • Ho Soo Lee;Chang Hyun Lee;Young DO Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.86-86
    • /
    • 2023
  • 최근에 들어 환경보전과 지속가능한 하천관리의 중요성이 대두되고 있으며, 통합물관리에 있어 수리량과 수질을 연계한 통합 모니터링의 필요성이 커지고 있다. 수리량과 수질 분야에 대한 모니터링 기술은 지속적인 연구가 이루어져 왔으나, 각 분야의 개별적 연구로 인해 수리량과 수질을 통합하여 모니터링 하는 기술 개발은 미흡한 수준이다. 또한 수질 측정은 수질오염공정시험기준에 있는 채수 기준에 따라 채수하여 측정하고 있으며, 채수 지점은 하천의 수심별로 달리하여 정해진다. 수리 측정은 현장계측을 통한 2차원적 계측으로 진행하고 있어 수질 측정 시 채수지점과 수리 측정지점은 일치하지 않는다. 동일 지점에서의 수질과 수리량을 동시에 고려하고 있지 못한 모니터링은 본류와 지류의 혼합거동이 많은 국내 하천 특성을 반영하지 못한다. 또한 현재의 수질·수리 모니터링은 ADCP나 다항목수질측정기 같은 고가의 장비를 운영하며, 홍수기와 같은 고위험 계측 조건에서 인력을 통해 측정하고 있기에 고비용의 장비운영비와 인명 피해를 야기시키고 있다. 따라서 무인 원격 기술을 적용한 하천 모니터링 기술과 수질과 수리량의 데이터 연계를 통한 3차원 모니터링 기술의 확보는 하천관리에 있어 매우 필수적이다. 본 연구에서는 수중 무인 원격이동체인 ROV와 무인 원격이동체(USV)를 활용한 3차원 수질·수리 모니터링 기술 개발에 관한 연구를 수행하였다. 국내 하천 특성을 고려한 혼합거동을 분석하기 위해 ROV에 수중 GPS 장비와 수질센서를 부착시켜 수중 내 2차원으로 측정되는 수리량과 동일한 좌표를 가지는 수질자료를 계측하여 하천의 연직 분포와 수평적 분포를 통해 화학적 수리적 거동을 분석하여 하천의 3차원 혼합거동 양상을 판단할 수 있었다. 이와 같은 무인 원격이동체를 통한 3차원 수질·수리 모니터링 기술은 하천의 3차원 분석에서 수질·수리량 보간 자료로 활용 가능하며, 효율적인 모니터링을 통하여 하천 전반 및 통합물관리에 있어 크게 기여할 것이라 사료된다.

  • PDF

Implementation of IoT Application using Geofencing Technology for Mountain Management (산악 관리를 위한 지오펜싱 기술을 이용한 IoT 응용 구현)

  • Hyeok-jun Kweon;Eun-Gyu An;Hoon Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.3
    • /
    • pp.300-305
    • /
    • 2023
  • In this paper, we confirmed that an efficient sensor network can be established at a low cost by applying Geofencing technology to a LoRa-based sensor network and verified its effectiveness in disaster management such as forest fires. We detected changes through GPS, gyro sensors, and combustion detection sensors, and defined the validity size of the Geofencing cell accurately. We proposed a LoRa Payload Frame Structure that has a flexible size according to the size of the sensor information.

A Study for Utilization and constitution of MMSS (MMSS 시스템 구성 및 활용에 대한 연구)

  • Kim, Kwang-Yong;Yeun, Yeo-Sang;Choi, Jong-Hyun;Kim, Min-Soo;Kim, Kyoung-Ok
    • Journal of Korea Spatial Information System Society
    • /
    • v.3 no.1 s.5
    • /
    • pp.117-126
    • /
    • 2001
  • We have developed the Mobile Multi Sensor System(MMSS) for the data construction of 4S application and for basic technology acquisition of mobile mapping system in Korea. Using this MMSS, we will collect the information of road and road facilities for DB creation and also construct the Digital Elevation Model(DEM) as ancillary data in urban area. The MMSS consist of the integrated navigation sensor, DGPS & IMU, and digital CCD camera set. In the S/W aspect, we developed the post-processing components for extracting the 3D coordinate information (Spatial Information) and the client program for the MMSS user group. In this paper, we will overview the MMSS constitution and post-processing program, and introduce the utilization plan of MMSS.

  • PDF

Non-Fire Alarm Management and Customized Automatic Guidance System (비화재보 관리 및 맞춤형 자동안내 시스템)

  • Hyo-Seung Lee;Ju-Sang Lee;Woo-Jun Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.355-360
    • /
    • 2023
  • Fire is a disaster that causes irreversible damage to many people due to personal injury and property damage. Various fire detection equipments are installed around us to detect and cope with it quickly. However, due to various problems such as artificial, environmental, and aging, fire detection equipment is activated even though it is not a actual fire, and there are many problems such as delaying the support to the necessary fire scene. In this paper, we analyze the non-fire alarm of the fire detection equipment and propose a system that enables the field staff to check the scene situation through the video as a way to prevent the mobilization due to the misinformation by checking the fire. The purpose of the present invention is to stably cope with a disaster by suggesting a customized automatic guidance system which induces a rapid evacuation by sending an evacuation guidance notification to a range of a fire occurrence neighboring area, and supports a rapid and accurate processing by a rapid dispatch of a firefighter, rather than a wide range of guidance such as an existing emergency disaster guidance letter when it is determined to be an actual fire through the confirmation procedure.

Performance Evaluation Using Neural Network Learning of Indoor Autonomous Vehicle Based on LiDAR (라이다 기반 실내 자율주행 차량에서 신경망 학습을 사용한 성능평가 )

  • Yonghun Kwon;Inbum Jung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.3
    • /
    • pp.93-102
    • /
    • 2023
  • Data processing through the cloud causes many problems, such as latency and increased communication costs in the communication process. Therefore, many researchers study edge computing in the IoT, and autonomous driving is a representative application. In indoor self-driving, unlike outdoor, GPS and traffic information cannot be used, so the surrounding environment must be recognized using sensors. An efficient autonomous driving system is required because it is a mobile environment with resource constraints. This paper proposes a machine-learning method using neural networks for autonomous driving in an indoor environment. The neural network model predicts the most appropriate driving command for the current location based on the distance data measured by the LiDAR sensor. We designed six learning models to evaluate according to the number of input data of the proposed neural networks. In addition, we made an autonomous vehicle based on Raspberry Pi for driving and learning and an indoor driving track produced for collecting data and evaluation. Finally, we compared six neural network models in terms of accuracy, response time, and battery consumption, and the effect of the number of input data on performance was confirmed.

Spatio-Temporal Projection of Invasion Using Machine Learning Algorithm-MaxEnt

  • Singye Lhamo;Ugyen Thinley;Ugyen Dorji
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.2
    • /
    • pp.105-117
    • /
    • 2023
  • Climate change and invasive alien plant species (IAPs) are having a significant impact on mountain ecosystems. The combination of climate change and socio-economic development is exacerbating the invasion of IAPs, which are a major threat to biodiversity loss and ecosystem functioning. Species distribution modelling has become an important tool in predicting the invasion or suitability probability under climate change based on occurrence data and environmental variables. MaxEnt modelling was applied to predict the current suitable distribution of most noxious weed A. adenophora (Spreng) R. King and H. Robinson and analysed the changes in distribution with the use of current (year 2000) environmental variables and future (year 2050) climatic scenarios consisting of 3 representative concentration pathways (RCP 2.6, RCP 4.5 and RCP 8.5) in Bhutan. Species occurrence data was collected from the region of interest along the road side using GPS handset. The model performance of both current and future climatic scenario was moderate in performance with mean temperature of wettest quarter being the most important variable that contributed in model fit. The study shows that current climatic condition favours the A. adenophora for its invasion and RCP 2.6 climatic scenario would promote aggression of invasion as compared to RCP 4.5 and RCP 8.5 climatic scenarios. This can lead to characterization of the species as preferring moderate change in climatic conditions to be invasive, while extreme conditions can inhibit its invasiveness. This study can serve as reference point for the conservation and management strategies in control of this species and further research.

Study on the Development of K-City Roadmap through the Standard Analysis of the Test-Bed for Automated Vehicles in China (중국 자율주행차 테스트베드 관련 표준 분석을 통한 K-City 고도화 방안 수립에 관한 연구)

  • Lee, Sanghyun;Ko, Hangeom;Lee, Hyunewoo;Cho, Seongwoo;Yun, Ilsoo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.1
    • /
    • pp.6-13
    • /
    • 2022
  • The Ministry of Land, Infrastructure and Transport (MoLIT) and the Korean Automobile Testing and Research Institute (KATRI) are supporting the development of Lv.3 automated vehicle (hereinafter, AV) technology by constructing an automated driving pilot city (as known as K-City) equipped with total 5 evaluation environments (urban, motorway, suburban, community road, and autonomous parking facility) which is a test bed exclusively for AV (2017~2018). An upgrade project is in a progress to materialize harsh environments such as bad weather (rain, fog, etc.) and reproduction of communication jamming (GPS blocking, etc.) with the purpose of supporting the development of Lv.4 connected & automated vehicle (hereinafter, CAV) technology (2019~2022). We intend to proactively establish a national level standard for CAV test-bed and test road requirements, test method, etc. for establishment of a road map for the construction of the test bed which is being promoted step by step and analyze and, when required, benchmark the case of China that has announced and is utilizing it. Through this, we plan to define standardized requirements (evaluation facility, evaluation system, etc.) on the test bed for the development of Lv.4/4+ CAV technology and utilize the same for the design and construction of a test bed, establishment of a road map for the construction of a real car-based test environment related to the support for autonomous driving service substantiation, etc. through provision of an evaluation environment utilizing K-City, and the establishment of a K-City upgrade strategies, etc.

A Study on Spatial Co-experience through Social Data (소셜 데이터를 통한 공간적 공동경험에 관한 연구)

  • Cha, Min-Geum;Lee, Jooyoup
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.851-859
    • /
    • 2017
  • Today, with the advent and development of Social Network Service (SNS), various types of information that have been difficult to observe have been pouring out. Recently, Vertical Social Networking Service (SNS), a service that shares specific interests with users' Vertical Social Networking Service) is emerging as a major research area. Especially, various human, social and spatial characteristics can be observed through geolocation data and social data collected through mobile GPS, and it is used in various studies. In this study, we analyze the social data collected through the image - based vertical SNS Instagram, and measure the user 's experience based on the social media based on the user' s spatial context. Therefore, in this study, we investigate what types of spatial patterns exist between experiential elements of sharing experiences and geographical characteristics through social data, and examine a new model of shared experience structure through extracted data.

Mobile Robot Localization in Geometrically Similar Environment Combining Wi-Fi with Laser SLAM

  • Gengyu Ge;Junke Li;Zhong Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1339-1355
    • /
    • 2023
  • Localization is a hot research spot for many areas, especially in the mobile robot field. Due to the weak signal of the global positioning system (GPS), the alternative schemes in an indoor environment include wireless signal transmitting and receiving solutions, laser rangefinder to build a map followed by a re-localization stage and visual positioning methods, etc. Among all wireless signal positioning techniques, Wi-Fi is the most common one. Wi-Fi access points are installed in most indoor areas of human activities, and smart devices equipped with Wi-Fi modules can be seen everywhere. However, the localization of a mobile robot using a Wi-Fi scheme usually lacks orientation information. Besides, the distance error is large because of indoor signal interference. Another research direction that mainly refers to laser sensors is to actively detect the environment and achieve positioning. An occupancy grid map is built by using the simultaneous localization and mapping (SLAM) method when the mobile robot enters the indoor environment for the first time. When the robot enters the environment again, it can localize itself according to the known map. Nevertheless, this scheme only works effectively based on the prerequisite that those areas have salient geometrical features. If the areas have similar scanning structures, such as a long corridor or similar rooms, the traditional methods always fail. To address the weakness of the above two methods, this work proposes a coarse-to-fine paradigm and an improved localization algorithm that utilizes Wi-Fi to assist the robot localization in a geometrically similar environment. Firstly, a grid map is built by using laser SLAM. Secondly, a fingerprint database is built in the offline phase. Then, the RSSI values are achieved in the localization stage to get a coarse localization. Finally, an improved particle filter method based on the Wi-Fi signal values is proposed to realize a fine localization. Experimental results show that our approach is effective and robust for both global localization and the kidnapped robot problem. The localization success rate reaches 97.33%, while the traditional method always fails.