• Title/Summary/Keyword: GPS/INS System

Search Result 265, Processing Time 0.025 seconds

An Experimental Study on the Determination of Exterior Orientation Parameters with GPS/INS (GPS/INS에 의한 외부표정요소 결정에 관한 경험적 연구)

  • 한상득;조규전;이재원
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.53-62
    • /
    • 2004
  • This paper deals with a new approach to acquire the exterior orientation parameters based on GPS(Global Positioning System) in combination with IMU(Inertial Measuring Unit), which enables us to achieve the same accuracy with minimal ground control points comparing to the conventional photogrammetric method. To prove the possibility of practical use of GPS/INS photogrammetry, a survey flight was conducted loading with all necessary photographing systems. The observed data set by GPS/IMU were analyzed and verified :he accuracy performance of kinematic GPS, and also compared to those of conventional photogrammetry in various points of view.

A Development of CDGPS/INS integrated system with 3-dimensional attitude determination GPS Receiver (3차원 자세 결정용 GPS 수신기를 이용한 CDGPS/INS 통합 시스템 설계)

  • Lee, Ki-Won;Lee, Jae-Ho;Seo, Hung-Seok;Sung, Tae-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2075-2077
    • /
    • 2001
  • For precise positioning, GPS carrier measurements are often used. In this case, accurate position having mm${\sim}$cm error can be obtained. For 3D positioning, in CDGPS, more than five carrier phase measurements are required. When GPS signals are blocked or carrier phase measurements are insufficient, it cannot provide positioning solution. By integrating CDGPS with INS, continuity of positioning solution can be guaranteed. However, when a vehicle moves in low speed or in stationary, the CDGPS/INS integrated system is difficult to compensate INS attitude errors because GPS velocity error become relatively lange. In this paper, we used the 3D attitude GPS receiver to compensate the INS attitude error. By field experiments, it is shown that the proposed integration system maintains the navigation performance even when a vehicle is in low speed or GPS signal is blocked for a period of time.

  • PDF

Improvement of INS-GPS Integrated Navigation System using Wavelet Thresholding (웨이블릿 임계화 기법을 이용한 INS-GPS 결합항법 시스템의 성능향상)

  • Kang, Chul-Woo;Park, Chan-Gook;Cho, Nam-Ik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.767-773
    • /
    • 2009
  • This research have introduced wavelet signal processing technic for improving navigation signals. INS signals can be distorted with conventional pre-filtering method such as low-pass filtering by unwanted smoothing on real signals. But in this paper, wavelet thresholding method is implemented to INS signal to denoise for INS-GPS integrated system. This method reduces signal noise but not distorts the rapid varing signal. And this paper applied thresholding to INS-GPS integrated navigation system and improved navigation performance.

Multi-Filter Fusion Technique for INS/GPS (INS/GPS를 위한 다중 필터 융합 기법)

  • 조성윤;최완식;김병두;조영수
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.48-55
    • /
    • 2006
  • A multi-filter fusion technique is proposed and this technique is applied to the INS/GPS integrated system. IIR-type EKF and FIR-type RHKF filter are fused to provide the advantages of these filters based on the adaptive mixing probability calculated by the residuals and the residual covariance matrices of the filters. In the INS/GPS, this fusion filter can provide more robust navigation information than the conventional stand-alone filter.

Development of a Software Platform for Designing Navigation Algorithm of a GPS/INS Integrated System (GPS/INS 통합 시스템의 항법 알고리즘 설계를 위한 소프트웨어 플랫폼 개발)

  • Lim, Deok-Won;Kim, Jeong-Won;Jeong, Ho-Cheol;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.197-198
    • /
    • 2008
  • A software platform which is able to evaluate the performances of a GPS/INS integrated system has been developed in this paper. And it consists of four parts including GUI(Graphic User Interface) part, GPS part, INS part and integrated filter part. It basically offers the loosely, tightly and deeply coupled GPS/INS algorithms, and many design parameters can be changed by users via GUI. Each functions of the platform has been confirmed with GPS signals and IMU data from commercial simulators.

  • PDF

Performance Investigation of GPS/INS Ultra-tightly integration for Navigation of Unmanned Expedition Vehicles (무인탐사체 항법을 위한 GPS/INS 초강결합 성능분석)

  • Chung ,Kwang-Youn;Cho Young-Seok;Shim Duk-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.773-779
    • /
    • 2006
  • GPS/INS integration is widely considered as main navigation systems of vehicles since GPS(Global Positioning System) and INS(Inertial Navigation System) have their own strength and weakness, respectively. Accuracy, continuity, integrity, and availability should be provided in navigation systems of vehicles. Ultra-tightly integration can improve these capacities, expecially availability of GPS. Unmanned Expedition Vehicles(UEV) must be robust against Jamming and external impact because UEV have to substitute for a man when they are in the place where they can not be controlled by a man. This paper analyzes the performance of Ultra-tightly integration and compares it with those of loosely integration and tightly integration for some trajectories

GPS/INS Data Fusion and Localization using Fuzzy Inference/UPF (퍼지추론/UPF를 이용한 UGV의 GPS/INS 데이터 융합 및 위치추정)

  • Lee, So-Hee;Yoon, Hee-Byung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.408-414
    • /
    • 2009
  • A GPS/INS system is widely used in the UGV to estimate position during the mission. However, there are few restrictions when a GPS/INS system used alone. For example, GPS provides precise location information but easily interrupted by external factors like weather, environment, etc. INS provides continuous location data but positioning errors grew very rapidly with time. Therefore, it is necessary to integrating multi-sensors for more continuous and correct position estimation. In this paper, we propose location estimation algorithm of the UGV for GPS/INS integrated system that combines Fuzzy Inference and Unscented Particle Filter(UPF) to improve navigation. Fuzzy inference provides the simplest method integrating GPS/INS and UPF is non-linear estimation filter well suited to the correction of errors. The performance of the proposed algorithm was tested to compare with other algorithms. the results show that the proposed algorithm is more accuracy in position estimation and ensures continuous position tracking.

Algorithm for Identifying Highway Horizontal Alignment using GPS/INS Sensor Data (GPS/INS 센서 자료를 이용한 도로 평면선형인식 알고리즘 개발)

  • Jeong, Eun-Bi;Joo, Shin-Hye;Oh, Cheol;Yun, Duk-Geun;Park, Jae-Hong
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.175-185
    • /
    • 2011
  • Geometric information is a key element for evaluating traffic safety and road maintenance. This study developed an algorithm to identify horizontal alignment using global positioning system(GPS) and inertial navigation system(INS) data. Roll and heading information extracted from GPS/INS were utilized to classify horizontal alignment into tangent, circular curve, and transition curve. The proposed algorithm consists of two components including smoothing for eliminating outlier and a heuristic classification algorithm. A genetic algorithm(GA) was adopted to calibrate parameters associated with the algorithm. Both freeway and rural highway data were used to evaluate the performance of the proposed algorithm. Promising results, which 90.48% and 88.24% of classification accuracy were obtainable for freeway and rural highway respectively, demonstrated the technical feasibility of the algorithm for the implementation.

An Attitude Determination GPS and INS Integration Scheme: Design and Flight Experiment (자세측정용 GPS/INS 통합시스템 구성 및 비행 시험)

  • Kim, Jeong Won;Hwang, Dong-Hwan;Lee, Sang Jeong;Park, Chansik;Oh, Sang Heon;Kim, Se Hwan;Ahn, Lee-Ki;Lee, Jang-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.112-119
    • /
    • 2004
  • This paper proposes an attitude determination GPS/INS integrated system scheme for a UAV and presents experimental flight test results. The proposed system is designed as a part of an autopilot system and comprises a GPS attitude determination receiver, an off-the-shelf inertial measurement unit (IMU), and a navigation computer unit (NCU). UAV requires accurate attitude information for stable automatic flight control. The proposed system can provide accurate attitude information for the flight control computer (FCC) so that stable automatic flight control can be achieved. In order to verify the performance of the proposed scheme, an integrated navigation system has been developed. In order to evaluate the developed navigation system, the flight test has been performed. In the flight test, the developed system was shown to provide the position, the velocity and the attitude satisfactorily enough for stable flight control. The accuracy of the attitude information of the developed system was confirmed by comparing attitude of vertical gyro.

  • PDF

Accuracy Improvement of Low Cost GPS/INS Integration System for Digital Photologging System

  • Kim, Byung-Guk;Kwon, Jay-Hyoun;Lee, Jong-Ki
    • Korean Journal of Geomatics
    • /
    • v.2 no.2
    • /
    • pp.99-105
    • /
    • 2002
  • The accuracy of the Digital Photologging System, designed for the construction of the road Facility Database, highly depends on the positions and attitudes of the cameras from GPS/INS integration. In this paper, the development of a loosely coupled GPS/INS is presented. The performance of the system is verified through a simulation as well as a real test data processing. Since the IMU used in this study shows large systematic errors, the possible accuracy of the positions and attitudes of this low-performance IMU when combined with precise GPS positions are assigned. Currently, the integrated system shows the positional accuracy better than 5cm in real data processing. Although the accuracy of attitude based on real test could not be assigned at this time, it is expected that better than 0.5 degrees and 1.8 degrees for horizontal and down component are achievable according to the simulation result.

  • PDF