• Title/Summary/Keyword: GPS, GNSS

Search Result 407, Processing Time 0.022 seconds

Performance Analysis of Integrated GNSS with GPS and QZSS (GPS와 QZSS 통합위성항법 성능 분석)

  • Ko, Kwang-Soob;Choi, Chang-Mook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.1031-1039
    • /
    • 2016
  • The Quasi-Zenith Satellite System(QZSS) is the Japanese satellite navigation system, which designs to increase the GPS system's visibility in the urban areas. The first satellite(Michibiki) was launched in 2010 and started to broadcast navigation signals. Therefore, the purpose of the research is to analyze the performance of GPS and QZSS based on the advantage of the integrated GNSS. Especially, the study has been processed in terms of improving satellite navigation parameters around Korean Peninsula. To do this, there have been the comprehensive analysis of the QZSS characteristics, the experimental test, and its statistical analysis for realizing advantage of GPS and QZSS. Through these systemic steps, it was recognized that the integrated GPS and QZSS has more reliable than GPS in case of not only limited visibility but also ordinary positioning. Additionally, the integrated GPS and QZSS would be very useful to improve the various navigation parameters around the peninsula.

Long-term Analysis of Availability and Accuracy Variation of GPS Ionospheric Delay Model (GPS 전리층 모델의 장기간 가용성 및 정확도 변화 분석)

  • Jeongrae Kim;Yongrae Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.841-848
    • /
    • 2023
  • The Klobuchar ionospheric model included in global positioning system (GPS) navigation messages provides ionospheric correction information to single-frequency users. This ionospheric model accuracy has a significant impact on the accuracy of navigation solutions. We examine the GPS navigation messages from 1993 to 2022 and analyze their accuracy, presence of coefficients and accuracy of the Klobuchar model. Early GPS navigation messages often did not include ionospheric data, and even when they did include ionospheric models, the accuracy was often quite low. From 2002, when the accuracy of the ionospheric model was stabilized, until 2022, the accuracy of the ionospheric model is analyzed by comparing it with the ionospheric model of the International GNSS Service (IGS). Changes in accuracy per day and per year and accuracy differences along geomagnetic latitude are analyzed.

Design of a High Dynamic-Range RF ASIC for Anti-jamming GNSS Receiver

  • Kim, Heung-Su;Kim, Byeong-Gyun;Moon, Sung-Wook;Kim, Se-Hwan;Jung, Seung Hwan;Kim, Sang Gyun;Eo, Yun Seong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.115-122
    • /
    • 2015
  • Global Positioning System (GPS) is used in various fields such as communications systems, transportation systems, e-commerce, power plant systems, and up to various military weapons systems recently. However, GPS receiver is vulnerable to jamming signals as the GPS signals come from the satellites located at approximately 20,000 km above the earth. For this reason, various anti-jamming techniques have been developed for military application systems especially and it is also required for commercial application systems nowadays. In this paper, we proposed a dual-channel Global Navigation Satellite System (GNSS) RF ASIC for digital pre-correlation anti-jam technique. It not only covers all GNSS frequency bands, but is integrated low-gain/attenuation mode in low-noise amplifier (LNA) without influencing in/out matching and 14-bit analogdigital converter (ADC) to have a high dynamic range. With the aid of digital processing, jamming to signal ratio is improved to 77 dB from 42 dB with proposed receiver. RF ASIC for anti-jam is fabricated on a 0.18-μm complementary metal-oxide semiconductor (CMOS) technology and consumes 1.16 W with 2.1 V (low-dropout; LDO) power supply. And the performance is evaluated by a kind of test hardware using the designed RF ASIC.

Circumstance Change of GNSS & Application Strategy of Navigation Technology for Modem Weapon System (GNSS 구축 환경변화와 현대무기체계에의 항법기술 사용전략)

  • Ko, Kwang-Soob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.267-275
    • /
    • 2010
  • Recently, the implementation & modern policy for Global Navigation Satellite System have actively been performed by USA, RUSSIA, EU & CHINA. Therefore 100+ navigation satellites will be in orbit by 2015, and the user of military and civil will benefit from the use of a total constellation of 100+ satellites. It means that the deepest dependence to GPS would be declined. In the paper, the latest technology development & implementation policy of GNSS have been analyzed. Specially, we focused on circumstance change of GNSS & application of navigation technology for modem weapon system. Finally, the application strategy of the integrated GNSS is suggested for military and civil as well.

Assessing the Real-time Positioning Accuracy of Low-cost GPS Receiver using NTRIP-based Augmentation Service (Ntrip 기반 보정서비스를 활용한 저가 GPS 수신기의 실시간 측위 정확도 평가)

  • Lee, Yong Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.3
    • /
    • pp.31-39
    • /
    • 2015
  • This paper presents the static and kinematic positioning accuracy by the real-time GPS positioning modes of the low-cost GPS receivers using NTRIP-based augmentation service. For this, acquires both the raw measurements data of the field tests by LEA 6T GPS module of u-blox AG, and correction communication via NTRIP caster with RTKLIB as an open source program for GNSS solution. With computing the positions of the check points and road tracks by six kinds of GPS positioning modes which are Single, SBAS, DGPS, PPP, RTK, and TCP/IP_RTK, compared these results to the reference position of the check points. The position error average and rmse of the static test by GPS L1 RTK surveying showed $N=0.002m{\pm}0.001m$, $E=0.004m{\pm}0.001m$ in horizontal plane, and $h=-0.116m{\pm}0.003m$ in vertical, these results are very closed to the coordinates with the geodetic receiver. Especially, in case of the kinematic test with obstacles located on both sides of road, the computed track with ambiguity fixing showed very similar trajectory considerably from VRS network RTK mode. And also, evaluate and verify the performance of the TCP/IP_RTK mode developed based on TCP/IP protocol.

Method of BeiDou Pseudorange Correction for Multi-GNSS Augmentation System (멀티 GNSS 보정시스템을 위한 BeiDou 의사거리 보정기법)

  • Seo, Ki-Yeol;Kim, Young-Ki;Jang, Won-Seok;Park, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2307-2314
    • /
    • 2015
  • This paper focuses on the generation algorithm of BeiDou pseudorange correction (PRC) and simulation based performance verification for design of Differential Global Navigation Satellite System (DGNSS) reference station and integrity monitor (RSIM) in order to prepare for recapitalization of DGNSS. First of all, it discusses the International standard on DGNSS RSIM, based on the interface control document (ICD) for BeiDou, estimates the satellite position using satellite clock offset and user receiver clock offset, and the system time offset between Global Positioning System (GPS) and BeiDou. Using the performance verification platform interfaced with GNSS (GPS/BeiDou) simulator, it calculates the BeiDou pseudorange corrections , compares the results of position accuracy with GPS/DGPS. As the test results, this paper verified to meet the performance of position accuracy for DGNSS RSIM operation required on Radio Technical Commission for Maritime Services (RTCM) standard.

A DETECTION STUDY OF THE IONOSPHERIC TOTAL ELECTRON CONTENTS VARIATIONS USING GPS NETWORK (GPS 기준국망을 이용한 전리층 총전자수 변화 검출 연구)

  • Choi, Byung-Kyu;Park, Jong-Uk;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.269-274
    • /
    • 2007
  • We established a regional ionospheric model for investigating ionospheric TEC (Total Electron Contents) variations over the Korean Peninsula during major geomagnetic storms. In order to monitor the ionospheric TEC variations, we used nine permanent GPS reference stations uniformly distributed in South Korea operated by the Korea Astronomy and Space Science Institute (KASI). The cubic spline smoothing (CSS) interpolation method was used to analyze the characteristics of the ionospheric TEC variations. It has been found that variations of TEC over the Korean Peninsula increase when a major geomagnetic storm occurred on November 20, 2003. The TEC has increased about one and a half of those averaged quite days at the specific time during a geomagnetic storm. It has been indicated that the KASI GPS-derived TEC has a correlation with the geomagnetic storm indices (eq. Kp and Dst indices).

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms based on GPS Code-Pseudorange Measurements (GPS 코드의사거리 기반 정밀단독측위(PPP) 알고리즘 개발 및 측위 정확도 평가)

  • Park, Kwan Dong;Kim, Ji Hye;Won, Ji Hye;Kim, Du Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • Precise Point Positioning (PPP) algorithms using GPS code pseudo-range measurements were developed and their accuracy was validated for the purpose of implementing them on a portable device. The group delay, relativistic effect, and satellite-antenna phase center offset models were applied as fundamental corrections for PPP. GPS satellite orbit and clock offsets were taken from the International GNSS Service official products which were interpolated using the best available algorithms. Tropospheric and ionospheric delays were obtained by applying mapping functions to the outputs from scientific GPS data processing software and Global Ionosphere Maps, respectively. When the developed algorithms were tested for four days of data, the horizontal and vertical positioning accuracies were 0.8-1.6 and 1.6-2.2 meters, respectively. This level of performance is comparable to that of Differential GPS, and further improvements and fine-tuning of this suite of PPP algorithms and its implementation at a portable device should be utilized in a variety of surveying and Location-Based Service applications.

A Study on the Application Technique of Realtime Bridge Monitoring System based on GNSS (GNSS 기반의 실시간 교량변위 모니터링 시스템 적용기술 연구)

  • Yeon, Sang-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.1
    • /
    • pp.362-369
    • /
    • 2016
  • Recently, Last to check the security status of various medium and large bridge structures using various kinds of measurement equipment, but most of the methods are used to measure and check the displacement behavior of the bridge by a certain period. In this study, receive GPS satellite signals that can be observed in real time the whole region, a bridge to automatically measure the displacement and behavior characteristics of the structure in real-time in mm over the 24 hours, the measurement information and transmits the data to the wireless network, by making use, it was applied to the real-time monitoring system in connection with a bridge to be able to automatically notify GNSS fine displacement behavior. In fact, analysis and receives the measurement data to GNSS provided in the upper bridge of the middle and large-sized aging for this purpose, measuring USN and at the same time is converted into a three-dimensional position information of a test study was conducted to monitor the bridge displacement in real time. As a result, a vertical displacement of about 0.027~0.037m at the measurement time of day of the measurement point is that the repeated and confirmed.

우리나라 Loran-C 운영현황 및 활용전망

  • Gu, Ja-Heon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.312-318
    • /
    • 2011
  • 최근 서해지역 및 경기북부지역에서는 북측의 소행으로 의심되는 GPS 재밍 사고가 수차례 발생되면서 선박 및 항공기의 운항차질은 물론이고 기간통신망 및 방송사 장비의 장애 현상을 격는 등 위성항법시스템의 취약성에 대한 국가 측위인프라의 안전 대책이 절실히 요구되고 있다. 따라서 본 자료에서는 지상송신국을 기반으로 하는 eLoran 시스템을 활용하여 GNSS 대체항법시스템으로 활용하여 항법 및 타이밍 분야의 안전성도 확보하고, 기존 로란-C 인프라를 활용함으로서 구축비용 및 설치기간을 최소화 하는 국가측위인프라 효율화 방안에 관해 고찰하였다.

  • PDF