• Title/Summary/Keyword: GPR detection

Search Result 73, Processing Time 0.019 seconds

Detection of the Pipe Leak for Water Distribution System Using Ground Penetrating Radar (GPR을 이용한 상수관로의 누수 탐사)

  • Park, In-Chan;Cho, Won-Cheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1271-1274
    • /
    • 2006
  • 지하레이다(Ground Penetrating Radar, GPR)를 이용하여 지표하의 상수관로를 지표에서 송신안테나와 수신안테나를 이용해서 손쉽게 측정하게 된다. 송신안테나는 지표하에 전자기파를 송신하고 지하 매질을 투과한 파가 수신안테나에 도달하는 시간을 측정하여 지표하 매질의 특성을 파악할 수 있다. 수신파의 도달시간은 지표하 매질의 특성에 따라서 변화하며, 이를 통해 지표하 매질과 매질 깊이 등을 파악할 수 있다. 일반적으로 상수관로를 매설할 경우 관로 주변의 토양은 균등하게 되므로 기 매설된 상수관로 주변에 누수가 발생하게 되면, 관로 주변의 토양은 포화상태이거나 수압으로 인해서 공동이 형성될 경우가 많다. 이때 반사에너지의 유전율 증가 혹은 감소 특성으로 인해서 주변 매질과는 매우 상이한 결과를 보이게 된다. GPR탐사는 단순히 반사된 신호진폭의 크기를 나타내며 이러한 반사에너지의 크기에 관계되는 것은 매설물의 유전율이 주위 지반이 갖는 유전율과의 차이에서 기인하기 때문이다. 탐사 대상 상수관로에 대한 정보를 확보하여 GPR 탐사를 수행한 결과 관로 탐사를 위한 GPR의 결과는 매우 유용하게 사용될 것으로 판단되며, 이를 바탕으로 누수 발생 이력이 있는 다양한 관로주변 조건을 대상으로 탐사를 실시할 경우 상수관망시스템의 효율적인 관리 및 보수에 매우 유용한 방법이 될 수 있을 것으로 판단된다.

  • PDF

A study on a Integrated analysis for survey of the cavity behind the Concrete (콘크리트 배면 공동탐사를 위한 복합적 해석 연구)

  • Noh, Myung-Gun;Oh, Seok-Hoon;Suh, Baek-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.185-189
    • /
    • 2009
  • Integrated analysis of GPR, impact echo and impulse response for detection of the rear cavity of concrete was performed on the test-bed which was made in the same scale and component ratio to the real concrete structure. GPR survey may roughly delineate the location of the cavity, but applying the IE and IR technique to the test-bed, the location was clearly identified.

  • PDF

Application of Image Processing Techniques to GPR Data for the Reliability Improvement in Subsurface Void Analysis (지표레이더(GPR) 탐사자료를 이용한 지하공동 분석 시 신뢰도 향상을 위한 영상처리기법의 활용)

  • Kim, Bona;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.61-71
    • /
    • 2017
  • Recently, ground-penetrating radar (GPR) surveys have been actively carried out for precise subsurface void investigation because of the rapid increase of subsidence in urban areas. However, since the interpretation of GPR data was conducted based on the interpreter's subjective decision after applying only the basic data processing, it can result in reliability problems. In this research, to solve these problems, we analyzed the difference between the events generated from subsurface voids and those of strong diffraction sources such as the buried pipeline by applying the edge detection technique, which is one of image processing technologies. For the analysis, we applied the image processing technology to the GRP field data containing events generated from the cavity or buried pipeline. As a result, the main events by the subsurface void or diffraction source were effectively separated using the edge detection technique. In addition, since subsurface voids associated with the subsidence has a relatively wide scale, it is recorded as a gentle slope event unlike the event caused by the strong diffraction source recorded with a sharp slope. Therefore, the directional analysis of amplitude variation in the image enabled us to effectively separate the events by the subsurface void from those by the diffraction source. Interpretation based on these kinds of objective analysis can improve the reliability. Moreover, if suggested techniques are verified to various GPR field data sets, these approaches can contribute to semiautomatic interpretation of large amount of GPR data.

Signal Pattern Analysis of Ground Penetrating Radar for Detecting Road Cavities (도로동공 탐지를 위한 지표투과레이더의 신호패턴에 관한 연구)

  • Yoon, Jin-Sung;Baek, Jongeun;Choi, Yeon Woo;Choi, Hyeon;Lee, Chang Min
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.61-67
    • /
    • 2016
  • OBJECTIVES : The objective of this study is to detect road cavities using multi-channel 3D ground penetrating radar (GPR) tests owned by the Seoul Metropolitan Government. METHODS : Ground-penetrating radar tests were conducted on 204 road-cavity test sections, and the GPR signal patterns were analyzed to classify signal shape, amplitude, and phase change. RESULTS : The shapes of the GPR signals of road-cavity sections were circular or ellipsoidal in the plane image of the 3D GPR results. However, in the longitudinal or transverse direction, the signals showed mostly unsymmetrical (or symmetrical in some cases) parabolic shapes. The amplitude of the GPR signals reflected from road cavities was stronger than that from other media. No particular pattern of the amplitude was found because of nonuniform medium and utilities nearby. In many cases where road cavities extended to the bottom of the asphalt concrete layer, the signal phase was reversed. However, no reversed signal was found in subbase, subgrade, or deeper locations. CONCLUSIONS : For detecting road cavities, the results of the GPR signal-pattern analysis can be applied. In general, GPR signals on road cavity-sections had unsymmetrical hyperbolic shape, relatively stronger amplitude, and reversed phase. Owing to the uncertainties of underground materials, utilities, and road cavities, GPR signal interpretation was difficult. To perform quantitative analysis for road cavity detection, additional GPR tests and signal pattern analysis need to be conducted.

Modelling and Simulation Resolution of Ground-Penetrating Radar Antennas

  • Alsharahi, G.;Mostapha, A. Mint Mohamed;Faize, A.;Driouach, A.
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.182-190
    • /
    • 2016
  • The problem of resolution in antenna ground-penetrating radar (GPR) is very important for the investigation and detection of buried targets. We should solve this problem with software or a numeric method. The purposes of this paper are the modelling and simulation resolution of antenna radar GPR using three antennas, arrays (as in the software REFLEXW), the antenna dipole (as in GprMax2D), and a bow-tie antenna (as in the experimental results). The numeric code has been developed for study resolution antennas by scattered electric fields in mode B-scan. Three frequency antennas (500, 800, and 1,000 MHz) have been used in this work. The simulation results were compared with experimental results obtained by Rial and colleagues under the same conditions.

High resolution groud penetrating image radar using an ultra wideband (UWB) impulse waveform (초광대역 임펄스를 이용한 고해상도 지반탐사 이미지 레이더)

  • Park Young-Jin;Kim Kwan-Ho;Lee Won-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.101-106
    • /
    • 2005
  • A ground penetrating image radar (GPR) using an ultra wideband (UWB)impulse waveform is developed for non destructive detection of metallic pipelines buried under the ground. Dielectric constant of test field is measured and then a GPR system is designed for better detection up to 1 meter deep. By considering total path loss, volume of complete system, and resolution, upper and lower frequencies are chosen. First, a UWB impulse for the frequency bandwidth of the impulse is chosen with rising time less than 1 ns, and then compact planar UWB dipole antenna suitable for frequency bandwidth of a UWB impulse is designed. Also, to receive reflected signals, a digital storage oscilloscope is used. For measurement, a monostatic technique and a migration technique are used. For visualizing underground targets, simple image processing techniques of A-scan removal and B-scan average removal are applied. The prototype of the system is tested on a test field in wet clay soil and it is shown that the developed system has a good ability in detecting underground metal objects, even small targets of several centimeters.

Deep-Learning-Based Mine Detection Using Simulated Data (시뮬레이션 데이터 기반으로 학습된 딥러닝 모델을 활용한 지뢰식별연구)

  • Buhwan Jeon;Chunju Lee
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.4
    • /
    • pp.16-21
    • /
    • 2023
  • Although the global number of landmines is on a declining trend, the damages caused by previously buried landmines persist. In light of this, the present study contemplates solutions to issues and constraints that may arise due to the improvement of mine detection equipment and the reduction in the number of future soldiers. Current mine detectors lack data storage capabilities, posing limitations on data collection for research purposes. Additionally, practical data collection in real-world environments demands substantial time and manpower. Therefore, in this study, gprMax simulation was utilized to generate data. The lightweight CNN-based model, MobileNet, was trained and validated with real data, achieving a high identification rate of 97.35%. Consequently, the potential integration of technologies such as deep learning and simulation into geographical detection equipment is highlighted, offering a pathway to address potential future challenges. The study aims to somewhat alleviate these issues and anticipates contributing to the development of our military capabilities in becoming a future scientific and technological force.

  • PDF

A Study on Characteristics of Ground-Penetrating Radar Signals for Detection of Buried Pipes (지하 매설관 탐지를 위한 지하탐사레이다 신호의 특성에 관한 연구)

  • Hyun, Seung-Yeup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.42-48
    • /
    • 2017
  • Characteristics of ground-penetrating radar(GPR) signals for detecting buried pipes are investigated numerically. Transmitting and receiving parts of a GPR system, a subsurface soil and a plastic pipe filled with a dielectric material are modeled by using the finite-difference time-domain(FDTD) method. FDTD simulations for observing aspects of GPR signals are performed as a function of the diameter of the pipe and the permittivity of the filling material in the pipe. GPR signals scattered by a dielectric filled pipe appear as a superposition of two waves, such as the specular wave from the front convex surface of the pipe and the axial wave from the rear concave surface of the pipe. We show that the amplitude, the polarity, the delay time of two waves depend on the size of the pipe and the permittivity of the filling material in the pipe.

Integrated Application of GPR, IE and IR Methods to Detection of the Rear Cavity of Concrete (콘크리트 배면공동 탐지를 위한 GPR, IE 및 IR기법의 복합 적용)

  • Noh, Myung-Gun;Oh, Seok-Hoon;Jang, Bong-Seok
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.338-346
    • /
    • 2009
  • Integrated analysis of GPR, impact echo (IE) and impulse response (IR) was performed to detect the rear cavity of concrete for a test-bed which was made with the same scale and component ratio to the real concrete structure. The test-bed was designed to be capable of observing various response reflecting the existence of iron reinforcing bar and cavity. GPR survey did not clearly resolve the existence of the cavity, although distinguishable responses were observed in the presence of the cavity. In contrast, IE and IR method showed distinct responses, indicating the existence of the cavity. Finally, integrated application of the three methods makes it possible to exactly identify the location of the cavity, although the iron reinforcing bar made a little variation of response.

A Study on Design and Fabrication of SRD Impulse Generator and Antenna for Ground Penetrating Radar System (지반투과 레이더 시스템을 위한 SRD 임펄스 발생기 및 안테나의 설계 및 제작에 관한 연구)

  • Kim, Hyoung-Jong;Shin, Suk-Woo;Choi, Gil-Wong;Choi, Jin-Joo;Shin, Shang-Youal
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.509-516
    • /
    • 2011
  • In this paper, a ground penetrating radar(GPR) system is implemented for landmine detection. The performance of the GPR system is associated with the characteristics of local soil and buried target. The choice of the center frequency and the bandwidth of the GPR system are the key factors in the GPR system design. To detect a small and shallow target, the higher frequencies are needed for high depth resolution. We have been designed, fabricated and tested a new impulse generator using step recovery diodes. The measured impulse response has an amplitude of 6.2V and a pulse width of 250ps. The implemented GPR system has been tested real environmental conditions and has proved its ability to detect a small buried target.