PURPOSES : The objective of this study is to determine the optimal frequency of ground penetrating radar (GPR) testing for detecting the voids under the pavement. METHODS : In order to determine the optimal frequency of GPR testing for void detection, a full-scale test section was constructed to simulate the actual size of voids under the pavement. Voids of various sizes were created by inserting styrofoam at varying depths under the pavement. Subsequently, 250-, 500-, and 800-MHz ground-coupled GPR testing was conducted in the test section and the resulting GPR signals were recorded. The change in the amplitude of these signals was evaluated by varying the GPR frequency, void size, and void depth. The optimum frequency was determined from the amplitude of the signals. RESULTS: The capacity of GPR to detect voids under the pavement was evaluated by using three different ground-coupled GPR frequencies. In the case of the B-scan GPR data, a parabolic shape occurred in the vicinity of the voids. The maximum GPR amplitude in the A-scan data was used to quantitatively determine the void-detection capacity. CONCLUSIONS: The 250-MHz GPR testing enabled the detection of 10 out of 12 simulated voids, whereas the 500-MHz testing allowed the detection of only five. Furthermore, the amplitude of GPR detection associated with 250-MHz testing is significantly higher than that of 500-MHz testing. This indicates that 250-MHz GPR testing is well-suited for the detection of voids located at depths ranging from 0.5~2.0 m. Testing at frequencies lower than 250 MHz is recommended for void detection at depths greater than 2 m.
PURPOSES : The purpose of this study is to evaluate different types of Ground Penetrating Radar (GPR) testing for characterizing the road cavity detection. The impulse and step-frequency-type GPR tests were conducted on a full-scale testbed with an artificial void installation. After analyzing the response signals of GPR tests for detecting the road cavity, the characteristics of each GPR response was evaluated for a suitable selection of GPR tests. METHODS : Two different types of GPR tests were performed to estimate the limitation and accuracy for detecting the cavities underneath the asphalt pavement. The GPR signal responses were obtained from the testbed with different cavity sizes and depths. The detection limitation was identified by a signal penetration depth at a given cavity for impulse and step-frequency-type GPR testing. The unique signal characteristics was also observed at cavity sections. RESULTS : The impulse-type GPR detected the 500-mm length of cavity at a depth of 1.0 m, and the step-frequency-type GPR detected the cavity up to 1.5 m. This indicates that the detection capacity of the step-frequency type is better than the impulse type. The step-frequency GPR testing also can reflect the howling phenomena that can more accurately determine the cavity. CONCLUSIONS :It is found from this study that the step-frequency GPR testing is more suitable for the road cavity detection of asphalt pavement. The use of step-frequency GPR testing shows a distinct image at the cavity occurrences.
본 연구에서는 매립관 및 공동에 대한 GPR 탐사의 실증적 자료 확보 및 GPR 탐사 자료의 이미지 처리를 위한 프로그램을 개발하기 위한 토조의 GPR 탐사를 시행하였다. 비포장 및 아스팔트 포장의 경우 심도 0.7m에서 물채움 공동을 확인할 수 있었으나, 1.0 m 및 1.3 m 깊이에 매립한 공동은 탐지 불가하였다. 무근 및 철근 콘크리트 포장의 경우 신호의 간섭이 심하여 공동을 탐지하는 것이 어려웠다. GPR 탐사 데이터의 이미지 처리를 위한 프로그램 GPRiPP을 개발하였다. 주요한 처리 기법인 백그라운드 제거, 스택킹 및 게인 기능 알고리즘을 프로그램에 반영하였으며, 적절한 백그라운드 제거 및 게인 기능을 사용하면 기존 프로그램과 유사한 이미지 처리 결과를 도출할 수 있음을 확인하였다.
최근 한국에서는 많은 지반 침하 사고가 발생하고 있는데, 이는 상하수의 누수 및 손상된 하수관에 기인한 것이다. 본 연구는 지반 침하에 대한 GPR 탐지 데이터의 실증적 자료를 구축하는 것을 목표로 한다. 이러한 목적으로 테스트 베드가 제작되었으며, 제작 변수는 주철관 및 EPS의 매입 깊이 및 수평 거리이다. 탐사결과, 1.5m의 깊이로 매립된 EPS는 검출하기 어려웠으며, 0.5m 거리 내에서 주철관에 밀접하게 매설 된 EPS는 매우 강한 주철관 신호로 탐지가 불가능했다. 또한 본 연구에서는 GPR 탐사 이미지 결과를 처리하기 위해 GPR 이미지 처리 프로그램 (GPRiPP)을 개발했다. 그 주요 기능은 위글파 신호를 증폭시키는 게인 기능이며, 기존 프로그램과 GPRiPP의 이미지 처리 기능은 매우 유사함을 확인하였다.
상수도 누수로 인한 우리나라 수자원의 고갈 때문에 효율적으로 누수를 탐지할 수 있는 방법이 시급하다. 본 논문에서는 지하탐사 레이더(GPR) 기법을 이용하여 누수지점을 탐사하였다. 메탄올이 채워진 아크릴 상자로 누수가 일어난 영역을 구현한 후, 본 실험실에 구축된 GPR 시스템을 사용하여 scale-down 실험을 수행하였다. 본 GPR실험의 타당성은 측정결과가 동일한 상황에서의 FDTD 계산 결과와 거의 일치함을 보임으로써 확인하였다. 누수 분포에 따른 B-scan 영상들을 제시함으로써 GPR 시스템의 누수탐지 가능성을 살펴보았다.
This research investigates the effectiveness of data augmentation techniques in the automated analysis of B-scan images from ground-penetrating radar (GPR) using deep learning. In spite of the growing interest in automating GPR data analysis and advancements in deep learning for image classification and object detection, many deep learning-based GPR data analysis studies have been limited by the availability of large, diverse GPR datasets. Data augmentation techniques are widely used in deep learning to improve model performance. In this study, we applied four data augmentation techniques (geometric transformation, color-space transformation, noise injection, and applying kernel filter) to the GPR datasets obtained from a testbed. A deep learning model for GPR data analysis was developed using three models (Faster R-CNN ResNet, SSD ResNet, and EfficientDet) based on transfer learning. It was found that data augmentation significantly enhances model performance across all cases, with the mAP and AR for the Faster R-CNN ResNet model increasing by approximately 4%, achieving a maximum mAP (Intersection over Union = 0.5:1.0) of 87.5% and maximum AR of 90.5%. These results highlight the importance of data augmentation in improving the robustness and accuracy of deep learning models for GPR B-scan analysis. The enhanced detection capabilities achieved through these techniques contribute to more reliable subsurface investigations in geotechnical engineering.
최근 도심지 도로에서 빈번하게 발생하는 도로 파임의 주원인인 지하 공동의 발생을 파악하기 위해, 차량 부착형 지표투과레이더(GPR)를 통해 얻은 대량의 취득 자료를 효율적으로 처리하기 위한 기계학습 기반 공동 탐지 기술이 활발하게 연구되고 있다. 그러나 기계학습 자료 생성 시 단순한 영상 처리 기법들만 활용되고 있고, 탄성파 탐사나 GPR 자료 처리에 시도되었던 여러 기법들은 충분히 활용되지 못하고 있다. 이 연구에서는 지하 공동의 탐지가 대부분 회절파의 탐지에 의해 이루어진다는 점에 착안하여 GPR 자료로부터 회절파를 분리하여 YOLO v5 모델을 이용한 도로 하부 공동 탐지 모델의 성능을 향상시켰다. 탄성파에서 개발된 기계학습 기반 회절파 분리 기법을 GPR 자료에 맞게 변형한 후, GPR 현장 자료에서 회절파를 분리하여 공동 탐지 모델의 입력으로 사용하였다. 서울시 공공 개방 GPR 자료를 이용하여 제안된 방법의 성능을 검증한 결과, 회절파 분리를 이용했을 때 더 정확하게 공동 및 지하 구조물을 탐지하는 것을 확인하였다. 또한 제안된 회절파 분리 기법은 향후 GPR 탐사가 이용되는 다양한 분야에서 활용될 수 있을 것으로 기대된다.
방조제의 모니터링에는 지구물리학적 비파괴 검사인 GPR (Ground Penetrating Radar) 탐사가 주로 이용된다. GPR 반응은 상황에 따라 복잡한 양상을 보이므로 자료의 처리와 해석은 전문가의 주관적 판단에 의존하며, 이는 오 탐지의 가능성을 불러옴과 동시에 시간이 오래 걸린다는 단점이 있다. 따라서 딥 러닝을 이용하여 GPR 탐사자료의 공동을 탐지하는 다양한 연구들이 수행되고 있다. 딥 러닝 기반 방법은 데이터 기반 방법으로써 풍부한 자료가 필요하나 GPR 탐사의 경우 비용 등의 이유로 학습에 이용할 현장 자료가 부족하다. 따라서 본 논문에서는 데이터 증강 전략을 이용하여 딥 러닝 기반 방조제 GPR 탐사자료 공동 탐지 모델을 개발하였다. 다년간 동일한 방조제에서 탐사 자료를 사용하여 데이터 세트를 구축하였으며, 컴퓨터 비전 분야의 객체 탐지 모델 중 YOLO (You Look Only Once) 모델을 이용하였다. 데이터 증강 전략을 비교 및 분석함으로써 최적의 데이터 증강 전략을 도출하였고, 초기 모델 개발 후 앵커 박스 클러스터링, 전이 학습, 자체 앙상블, 모델 앙상블 기법을 단계적으로 적용하여 최종 모델 도출 후 성능을 평가하였다.
도심지에는 많은 지중 매설관이 설치되어 있으며, 이러한 지중 관로의 위치(깊이, 방향 등)은 굴착을 수행하기 전에 특정되어야 한다. 지중 매설관을 탐지하기 위해 다양한 지구물리학적인 방법을 사용할 수 있으나, 지반의 불균질성으로 인해 정확한 위치정보를 파악하는 것은 어렵다. 다양한 비파괴 탐사 방법 중 GPR (ground penetrating radar)는 고속으로 실험이 가능하며, 다른 탐사 방법에 비해 상대적으로 저렴한 탐사비용 등의 장점을 갖는다. 그러나 GPR의 탐사 데이터는 해석이 직관적이지 않아 상당한 전문적 지식이 요구된다. 최근 딥러닝을 이용한 탐사 데이터의 자동판독 기술에 대한 연구가 증가하고 있으나, 매설물의 위치를 정확히 알고 있는 탐사 데이터가 부족하여 학습모델 구축에 어려움이 있다. 이를 해결하기 위해 본 연구에서는 이러한 문제를 FDTD (finite difference time domain)수치해석을 통해 해결하고 자동탐지 학습 모델의 성능을 향상시키기 위한 기초연구를 수행하였다. 첫째, 단일유전율로 구성된 균질지반을 구성하고 해석을 수행하였다. 불균질 지반의 경우 프랙탈 기법을 이용하여 모델을 구성하고 해석을 수행하였다. 둘째, 합성곱 신경망을 이용하여 딥러닝 학습을 수행하였다. Model-A는 균질 지반 해석 데이터만 이용하여 학습을 수행하였으며, Model-B는 균질 및 불균질 지반 해석 데이터를 이용하여 학습을 수행하였다. 그 결과 Model-B가 Model-A보다 탐지성능이 우수한 것을 확인하였다. 이는 자동탐지 모델의 학습 시, 지반의 불균질성을 포함하여 학습을 수행하면 탐지 모델의 성능이 개선됨을 의미한다.
본 연구에서는 토조에 설치한 관의 종류 및 매립 깊이, 공동 깊이 및 포장 조건 등에 대한 GPR(Ground Penetrating Radar) 탐사를 진행하여 매립관의 종류 및 공동 탐사 능력을 실험적으로 규명하였다. 아스팔트 포장 및 비포장의 경우, 콘크리트 포장 및 철근 콘크리트 포장 대비 매립관의 탐사가 용이한 것으로 평가되었다. 또한 공기 공동의 경우, 매립 깊이 1 m에서는 탐지가 가능한 것으로 평가되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.