• Title/Summary/Keyword: GPR탐사방법

Search Result 80, Processing Time 0.028 seconds

A Case study on the construction of a long tunnel in the youngdong railroad (Mt. Dongbaek-Dokye) (영동선 동백산-도계간 장대터널 시공사례 연구)

  • Kim, Yong-Il;Yoon, Young-Hoon;Cho, Sang-Kook;Yang, Jong-Hwa;Lee, Nai-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.155-165
    • /
    • 2002
  • This paper presents a case study on the construction of a long tunnel named as "Solan tunnel", which connects between Mt. Dongbaek station and Dokye station in the Youngdong Railroad. The tunnel will be the longest tunnel with length of 16.4 km in Korea when completed. The tunnel site is located in a complex geological region with faults, cavities and coal measures. In construction of adit No. 2, geophysical investigation methods such as electrical resistivity method and GPR(Ground Penetration Radar) were used to detect faults, cavities and coal measures in advance with some success. The geophysical investigation results and in-situ boring data were used as feedback to improve tunnel reinforcement design. Also, the tube umbrellas of grouted steel pipes were found to have a good reinforcement and grouting effects in zones of faults, cavities. In zones of coal measures, swellex rockbolts with mortar grouting were verified as successful.

  • PDF

Non-Destructive Precise Electromagnetic Surveying for the Deep Underground Utilities (고심도 지중매설물의 지하측랑을 위한 비파괴 정밀 전자측량)

  • 손호웅;이강원;김형수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.2
    • /
    • pp.109-121
    • /
    • 2003
  • Lots of various utilities are buried under the surface. The effective management of underground utilities is becoming the very important subject for the harmonious administration of the city. Ground Penetrating Radar(GPR) survey including other various underground survey methods, is mainly used to detect the position and depth of buried underground utilities. However, GPR is not applicable, under the circumstances of shallow depth and places, where subsurface materials are inhomogeneous and are composed of clay, salt and gravels. The aim of this study is to overcome these limitations of GPR and other underground surveys. High-frequency electromagnetic (HFEM) method is developed for the non-destructive precise deep surveying of underground utilities. The method is applied in the site where current underground surveys are useless to detect the underground big pipes, because of poor geotechlical environment. As a result, HFEM survey was very successful in detecting the buried shallow and deep underground pipes and in obtaining the geotechnical information, although other underground surveys including GPR were not applicable. Therefore this method is a promising new technique in the lots of fields, such as underground surveying and archaeology.

The Investigation of Alluvium by Using Electrical Resistivity, Seismic Survey and GPR (전기비저항, 탄성파 그리고 GPR 탐사를 활용한 충적층 탐사)

  • Park, Chung-Hwa;Won, Kyung-Sik;Byun, Ji-Hwan;Min, Dae-Hong;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.17-29
    • /
    • 2013
  • The geophysical methods have an advantage for investigating the wide area with low cost, and thus the application of these methods has been increased. The objective of this paper estimates the characteristics of alluvium through the geophysical methods including elastic wave, electrical resistivity and ground penetration radar. And the standard penetration test is also carried out for verifying the geophysical data with comparison. The sources of elastic wave method are divided into hammer and sissy and the electrical resistivity method is applied with different sizes, shapes and arrays of electrode for deciding the effective way. The center frequency is determined to be 270 MHz for considering the characteristics of soil. The results of ground penetration radar are also compared with those of standard penetration test. The high resolution shows when the source is a sissy in elastic wave method, however, the water level is not identified. In the electrical resistivity method, the non-polarizable electrode and schlumberger array show highly reliable data and the resolution of ground penetration radar is low. Thus, the results of this study are widely applied for determining the appropriate method when investigating the characteristics of alluvium.

A STUDY ON THE SAFETY ANALYSIS OF ROCK FILL DAM (1) (필댐의 안정성 해석 연구 (1))

  • HoWoongShon;DaeKeunLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.3
    • /
    • pp.165-177
    • /
    • 2003
  • The purpose of this paper is to analyze the behavior and to study the safety evaluation of the Unmun Dam located in Cheongdo-Gun of GyeongBuk Province, Korea. For this purpose, soil analyses including boring data, geophysical surveys were conducted. In this paper, especially many geophysical methods were adopted to configure out the subsurface situation of dam. Applied geophysical methods were: 1) electric resistivity survey, 2) high frequency magnetotelluric (HFMT) survey, 3) ground penetrating radar (GPR) survey, 4) seismic refraction survey, 5) seismic cross-hole tomography survey, and 6) high frequency impedance (ZHF) survey. Each of geophysical surveys were analyzed and joint analyses between geophysical surveys were also performed to deduce the more reliable subsurface information of Dam by using the features and characteristics of each geophysical survey. Since many defects, such as gravel and weathered rock blocks in the dam core, and lots of amounts of leakage, by boring analyses were found, reinforcement by compaction grouting system (CGS) has been conducted in some range of dam. Some geophysical data and data of geotechnical gauges were also used to confirm the effects of reinforcement. Electric resistivity, EM, GPR, ZHF, seismic refraction and seismic tomography surveys show that left side of dam is weak, which means the possibility of existence of gravel, rock block, water and cavities in the core of dam. This result coincides with the boring data. Especially, electric survey after reinforcement shows that even the right side of the dam has been deformed by the strong pressure during the reinforcement itself. As a conclusion, some problems in the dam found. Especially, the dam near spillway shows the high possibility of leakage. It should be pointed out that only the left side of he dam has not a leakage problem. As a whole, the dam has problems of weakness, because of unsatisfactory construction. It is strongly recommended that highly intensive monitoring is required.

  • PDF

In-Situ Application of the Steel Pipe jacking with Grouting (그라우팅을 병행한 강관추진공법의 현장 적용성 연구)

  • Jung, Min-Hyung;Lim, Ho-Jung;Shin, Chang-Sub;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.152-160
    • /
    • 2009
  • The pipe jacking method which is a non-excavation method is frequently used due to constructability and economical efficiency in a medium or small-sized pipeline construction. However, jacking process of the method still causes problems that the base ground is disturbed and loosen. These lead to surface settlement, strength decrease and leakage of water. Therefore, this study presents in-situ application of the steel pipe jacking with grouting, and it is that jacking and grouting are progressed simultaneously. To verify this, the steel pipe jacking with grouting and the existing steel pipe jacking have been constructed on the same ground condition. It has been proved that the steel pipe jacking with grouting is in-situ applicable according to results of monitoring surface settlement, in-situ density, GPR geophysical prospecting and large scale direct shear test.

Numerical modelling of electromagnetic waveguide effects on crosshole radar measurements (시추공간 레이다 측정에서 전자기 도파관 효과의 수치모델링)

  • Jang, Han-Nu-Ree;Park, Mi-Kyung;Kim, Hee-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.69-76
    • /
    • 2007
  • High-frequency electromagnetic (EM) wave propagation associated with borehole ground-penetrating radar (GPR) is a complicated phenomenon. To improve the understanding of the governing physical processes, we employ a finite-difference time-domain solution of Maxwell's equations in cylindrical coordinates. This approach allows us to model the full EM wavefield associated with crosshole GPR surveys. Furthermore, the use of cylindrical coordinates is computationally efficient, correctly emulates the three-dimensional geometrical spreading characteristics of the wavefield, and is an effective way to discretise explicitly small-diameter boreholes. Numerical experiments show that the existence of a water-filled borehole can give rise to a strong waveguide effect which affects the transmitted waveform, and that excitation of this waveguide effect depends on the diameter of the borehole and the length of the antenna.

Relationship Analysis of Volumetric Water Content According to the Dielectric Constant for Stability Analysis of Ground Excavation (굴착의 안정성에 미치는 영향인자 분석을 위한 전자기적 유전상수와 체적함수비와의 상관관계 분석기법 연구)

  • Han, Yushik;Sohn, Hee Jeung;Yoo, Ki Cheong
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.153-163
    • /
    • 2016
  • In order to prevent ground collapses by groundwater level drawdown, we need to understand the groundwater flow and also make an analytical approach to the cause of the collapses. In this study, we used the result of the soil lab tests to compare and review the suitability of the various interaction equations about the relation between volumetric water content and the dielectric constant. In addition, using GPR (Ground-Penetrating Radar), we reviewed the possibility of calculating an estimate of dielectric constant. Lastly, we applied seepage analysis and stress-strain analysis to the sandy ground given by ground excavation. In comparison with the previous result of the soil lab tests, we similarly predicted the suction of unsaturated soil from results of stress-strain analysis considered the seepage force for the unsaturated soil.

Analysis for Reclaimed Cultural Asset Location Estimation with Complex Seismic Survey (복합지구물리탐사에 의한 매립 문화재 위치 추정 분석)

  • Jang, Ho-Sik;Roh, Tae-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.380-387
    • /
    • 2012
  • A complex seismic survey, which is nondestructive inspection, is used often recently in estimating the location of reclaimed cultural assets. Such a method is the best way to estimate the location of cultural assets most effectively in a short time at a construction site. This study estimated the reclamation location of a cultural asset by using magnetic gradient survey, earth resistivity survey, and ground penetrating radar survey (GPR) in order to figure out the distribution territory in the area with possibility of creation of reclaimed cultural assets in the past. As a result, it was located at +15m on the X axis and +90m on the Y axis on the floor plane coordinate of the study target area. It was shown that the major axis is about 20m long in the north-northeast direction and the width is about 5m. The depth of development distribution of anomaly zone was estimated as about 1.5~3.0m. Geophysical survey is expected to be used as a efficient and accurate way to excavate the reclaimed cultural assets in future.

Enhanceement of Vertical Resolution of GPR data through Signature Deconvolution (신호파형 역대합을 통한 지중레이다 자료의 수직해상도 향상)

  • Kim, Gi-Yeong;Son, Ho-Ung;Lee, Ju-Han;Hong, Myeong-Ho
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • To remove ringing and increase vertical resolution of GRP data, signature deconvolution was applied to GPR data obtained using a 100 MHz antenna in the Soyang Lake. The signature was extracted through stacking reflection signals from the lake bottom. Results of this deterministic deconvolution was compared with those from the conventional Wienner method. Due to increased vertical resolution, both deconvolution methods are able to resolve three or more layers in an apparent single layer on the input data. However, identification of reflection boundaries from ringing is not easy due to poor definition in the output data of the Wienner filter. On the contrary, the signature deconvolution greatly enhances both vertical resolution and definition of reflection boundaries, showing detailed internal stratigraphic features of the three sedimentary layers. Since extraction of signature at various depths is possible, this deconvolution method can be appled effectively to unstationary GPR data.

  • PDF

An Experimental Study on Estimation of Size and Thickness of Cavitation(Void)s under Concrete Slabs and Tunnel Linings Using Law Frequency Type Radar(GPR) (저주파수 레이더(GPR)에 의한 콘크리트 상판 및 터널 라이닝 배면 공동의 크기 및 두께 추정에 관한 실험 연구)

  • Park, Seok-Kyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.95-104
    • /
    • 2006
  • The presence of cavitations under pavements or behind tunnel linings of concrete is likely to result in collapse. One method of detecting such voids by non-destructive means is low frequency type radar(GPR). By the way, the size and thickness of small cavitation can't be detected by the present radar technology with low frequency and low resolution when it apply to civil structures like that. To overcome these problems and limitations, this study aims to develope and propose a new analysis method for estimating the depth, cross-sectional size and thickness of cavitations using low frequency radar. A new proposed method is based on the experiments that are carried out for analyzing the correlation between the measurement values(the amplitudes of radar return) of low frequency radar and various type of cavitations. In this process, the threshold value for radar image processing which aims to represent only cavitations to be fitted size can be obtained. As the results, it is clarified that a proposed method has a possibility of estimating cavitation depth, size and thickness with good accuracy in laboratory scale.