• Title/Summary/Keyword: GPGPU(General-Purpose computation on the GPU)

Search Result 13, Processing Time 0.026 seconds

IPC-based Dynamic SM management on GPGPU for Executing AES Algorithm

  • Son, Dong Oh;Choi, Hong Jun;Kim, Cheol Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.11-19
    • /
    • 2020
  • Modern GPU can execute general purpose computation on the graphic processing unit, and provide high performance by exploiting many core on GPU. To run AES algorithm efficiently, parallel computational resources are required. However, computational resource of CPU architecture are not enough to cryptographic algorithm such as AES whereas GPU architecture has mass parallel computation resources. Therefore, this paper reduce the time to execute AES by employing parallel computational resource on GPGPU. Unfortunately, AES cannot utilize computational resource on GPGPU since it isn't suitable to GPGPU architecture. In this paper, IPC based dynamic SM management technique are proposed to efficiently execute AES on GPGPU. IPC based dynamic SM management can increase and decrease the number of active SMs by using IPC in run-time. According to simulation results, proposed technique improve the performance by increasing resource utilization compared to baseline GPGPU architecture. The results show that AES improve the performance by 41.2% on average.

Analysis of GPU Performance and Memory Efficiency according to Task Processing Units (작업 처리 단위 변화에 따른 GPU 성능과 메모리 접근 시간의 관계 분석)

  • Son, Dong Oh;Sim, Gyu Yeon;Kim, Cheol Hong
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.56-63
    • /
    • 2015
  • Modern GPU can execute mass parallel computation by exploiting many GPU core. GPGPU architecture, which is one of approaches exploiting outstanding computational resources on GPU, executes general-purpose applications as well as graphics applications, effectively. In this paper, we investigate the impact of memory-efficiency and performance according to number of CTAs(Cooperative Thread Array) on a SM(Streaming Multiprocessors), since the analysis of relation between number of CTA on a SM and them provides inspiration for researchers who study the GPU to improve the performance. Our simulation results show that almost benchmarks increasing the number of CTAs on a SM improve the performance. On the other hand, some benchmarks cannot provide performance improvement. This is because the number of CTAs generated from same kernel is a little or the number of CTAs executed simultaneously is not enough. To precisely classify the analysis of performance according to number of CTA on a SM, we also analyze the relations between performance and memory stall, dram stall due to the interconnect congestion, pipeline stall at the memory stage. We expect that our analysis results help the study to improve the parallelism and memory-efficiency on GPGPU architecture.

Efficient Thread Allocation Method of Convolutional Neural Network based on GPGPU (GPGPU 기반 Convolutional Neural Network의 효율적인 스레드 할당 기법)

  • Kim, Mincheol;Lee, Kwangyeob
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.10
    • /
    • pp.935-943
    • /
    • 2017
  • CNN (Convolution neural network), which is used for image classification and speech recognition among neural networks learning based on positive data, has been continuously developed to have a high performance structure to date. There are many difficulties to utilize in an embedded system with limited resources. Therefore, we use GPU (General-Purpose Computing on Graphics Processing Units), which is used for general-purpose operation of GPU to solve the problem because we use pre-learned weights but there are still limitations. Since CNN performs simple and iterative operations, the computation speed varies greatly depending on the thread allocation and utilization method in the Single Instruction Multiple Thread (SIMT) based GPGPU. To solve this problem, there is a thread that needs to be relaxed when performing Convolution and Pooling operations with threads. The remaining threads have increased the operation speed by using the method used in the following feature maps and kernel calculations.

Performance Improvement in Observation Probability Computation of Gaussian Mixture Models Using GPGPU (GPGPU를 이용한 가우시안 혼합 모델의 관측확률 계산 성능 향상)

  • Kim, Hyeong-Ju;Kim, Seung-Hi;Kim, Sanghun;Jang, Gil-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.148-151
    • /
    • 2012
  • 범용 GPU (general-purpose computing on graphics processing units, GPGPU)는 GPU를 일반적인 목적으로 사용하고자 하는 병렬 컴퓨터 구조로써, 과학 연산 등 여러 분야에서 응용 프로그램의 성능을 향상시키기 위하여 사용되고 있다. 본 연구에서는 음성인식기에서 주로 사용되는 가우시안 혼합 모델(Gaussian mixture model, GMM)에서 많은 연산시간을 차지하는 관측확률 계산의 성능을 향상시키고자 GPGPU를 이용하는 알고리즘을 구현하였으며, 기존 CPU 기반 알고리즘 대비 약 13배 연산시간을 단축하였다.

Spark Framework Based on a Heterogenous Pipeline Computing with OpenCL (OpenCL을 활용한 이기종 파이프라인 컴퓨팅 기반 Spark 프레임워크)

  • Kim, Daehee;Park, Neungsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.270-276
    • /
    • 2018
  • Apache Spark is one of the high performance in-memory computing frameworks for big-data processing. Recently, to improve the performance, general-purpose computing on graphics processing unit(GPGPU) is adapted to Apache Spark framework. Previous Spark-GPGPU frameworks focus on overcoming the difficulty of an implementation resulting from the difference between the computation environment of GPGPU and Spark framework. In this paper, we propose a Spark framework based on a heterogenous pipeline computing with OpenCL to further improve the performance. The proposed framework overlaps the Java-to-Native memory copies of CPU with CPU-GPU communications(DMA) and GPU kernel computations to hide the CPU idle time. Also, CPU-GPU communication buffers are implemented with switching dual buffers, which reduce the mapped memory region resulting in decreasing memory mapping overhead. Experimental results showed that the proposed Spark framework based on a heterogenous pipeline computing with OpenCL had up to 2.13 times faster than the previous Spark framework using OpenCL.

A Execution Performance Analysis of Applications using Multi-Process Service over GPU (다중 프로세스 서비스를 이용한 GPU 응용 동시 실행 성능 분석)

  • Kim, Se-Jin;Oh, Ji-Sun;Kim, Yoonhee
    • KNOM Review
    • /
    • v.22 no.1
    • /
    • pp.60-67
    • /
    • 2019
  • Graphical Processing Units(GPUs) achieve high performance undertaking from relatively uniformed computation in parallel. The technology related to General Purpose GPU(GPGPU) has been enhanced, which provides concurrent kernel execution of multi and diverse applications at the same time, but it is still limited to support resource sharing or planning. NVIDIA recently introduces Multi-Process Service(MPS), which allows kernels from different applications can be execute concurrently. However, the strength of MPS comes along with the characteristics of applications and the order of their execution. This paper shows the performance analysis of diverse scientific applications in real world. Based on the analysis, we prove that it is important to the identify characteristics of co-run applications, and to schedule multiple applications via profiling to maximize MPS functionality.

Parallelization of Feature Detection and Panorama Image Generation using OpenCL and Embedded GPU (OpenCL 및 Embedded GPU를 이용한 영상 특징 추출 및 파노라마 영상 생성의 병렬화)

  • Kang, Seung Heon;Lee, Seung-Jae;Lee, Man Hee;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.316-328
    • /
    • 2014
  • In this paper, we parallelize the popular feature detection algorithms, i.e. SIFT and SURF, and its application to fast panoramic image generation on the latest embedded GPU. Parallelized algorithms are implemented using recently developed OpenCL as the embedded GPGPU software platform. We compare the implementation efficiency and speed performance of conventional OpenGL Shading Language and OpenCL. Experimental result shows that implementation on OpenCL has comparable performance with GLSL. Compared with the performance on the embedded CPU in the same application processor, the embedded GPU runs 3~4 times faster. As an example of using feature extraction, panorama image synthesis is performed on embedded GPU by applying image matching using detected features.

Implementation of high performance parallel LU factorization program for multi-threads on GPGPUs (GPGPU의 멀티 쓰레드를 활용한 고성능 병렬 LU 분해 프로그램의 구현)

  • Shin, Bong-Hi;Kim, Young-Tae
    • Journal of Internet Computing and Services
    • /
    • v.12 no.3
    • /
    • pp.131-137
    • /
    • 2011
  • GPUs were originally designed for graphic processing, and GPGPUs are general-purpose GPUs for numerical computation with high performance and low electric power. In this paper, we implemented the parallel LU factorization program for GPGPUs. In CUDA, which is computational environment for Nvidia GPGPUs, domains are divided into blocks, and multi-threads compute each sub-blocks Simultaneously. In LU factorization program, computation order should be artificially decided due to the data dependence. To resolve the data dependancy, we suggested a parallel LU program for GPGPUs, and also explained parallel reduction algorithm for partial pivoting of LU factorization. We finally present performance analysis to show efficiency of the parallel LU factorization program based on multi-threads on GPGPUs.

Algorithmic GPGPU Memory Optimization

  • Jang, Byunghyun;Choi, Minsu;Kim, Kyung Ki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.391-406
    • /
    • 2014
  • The performance of General-Purpose computation on Graphics Processing Units (GPGPU) is heavily dependent on the memory access behavior. This sensitivity is due to a combination of the underlying Massively Parallel Processing (MPP) execution model present on GPUs and the lack of architectural support to handle irregular memory access patterns. Application performance can be significantly improved by applying memory-access-pattern-aware optimizations that can exploit knowledge of the characteristics of each access pattern. In this paper, we present an algorithmic methodology to semi-automatically find the best mapping of memory accesses present in serial loop nest to underlying data-parallel architectures based on a comprehensive static memory access pattern analysis. To that end we present a simple, yet powerful, mathematical model that captures all memory access pattern information present in serial data-parallel loop nests. We then show how this model is used in practice to select the most appropriate memory space for data and to search for an appropriate thread mapping and work group size from a large design space. To evaluate the effectiveness of our methodology, we report on execution speedup using selected benchmark kernels that cover a wide range of memory access patterns commonly found in GPGPU workloads. Our experimental results are reported using the industry standard heterogeneous programming language, OpenCL, targeting the NVIDIA GT200 architecture.

An Efficient Block Cipher Implementation on Many-Core Graphics Processing Units

  • Lee, Sang-Pil;Kim, Deok-Ho;Yi, Jae-Young;Ro, Won-Woo
    • Journal of Information Processing Systems
    • /
    • v.8 no.1
    • /
    • pp.159-174
    • /
    • 2012
  • This paper presents a study on a high-performance design for a block cipher algorithm implemented on modern many-core graphics processing units (GPUs). The recent emergence of VLSI technology makes it feasible to fabricate multiple processing cores on a single chip and enables general-purpose computation on a GPU (GPGPU). The GPU strategy offers significant performance improvements for all-purpose computation and can be used to support a broad variety of applications, including cryptography. We have proposed an efficient implementation of the encryption/decryption operations of a block cipher algorithm, SEED, on off-the-shelf NVIDIA many-core graphics processors. In a thorough experiment, we achieved high performance that is capable of supporting a high network speed of up to 9.5 Gbps on an NVIDIA GTX285 system (which has 240 processing cores). Our implementation provides up to 4.75 times higher performance in terms of encoding and decoding throughput as compared to the Intel 8-core system.