
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.4, AUGUST, 2014 http://dx.doi.org/10.5573/JSTS.2014.14.4.391

Manuscript received Feb. 1, 2014; accepted Apr. 29, 2014

A part of this work was presented in International SoC Design

Conference (ISOCC), Busan in Korea, November 2013.
1 Department of Computer and Information Science, The University of

Mississippi, University, MS, 38677 USA
2 Department Electrical & Computer Engineering, Missouri University of

Science & Technology, Rolla, MO, USA
3 Department Electrical & Computer Engineering, Daegu University,

Gyeongsan, South Korea

E-mail : kkkim@daegu.ac.kr

Algorithmic GPGPU Memory Optimization

Byunghyun Jang
1
, Minsu Choi

2
, and Kyung Ki Kim

3

Abstract—The performance of General-Purpose

computation on Graphics Processing Units (GPGPU)

is heavily dependent on the memory access behavior.

This sensitivity is due to a combination of the

underlying Massively Parallel Processing (MPP)

execution model present on GPUs and the lack of

architectural support to handle irregular memory

access patterns. Application performance can be

significantly improved by applying memory-access-

pattern-aware optimizations that can exploit

knowledge of the characteristics of each access

pattern. In this paper, we present an algorithmic

methodology to semi-automatically find the best

mapping of memory accesses present in serial loop

nest to underlying data-parallel architectures based

on a comprehensive static memory access pattern

analysis. To that end we present a simple, yet

powerful, mathematical model that captures all

memory access pattern information present in serial

data-parallel loop nests. We then show how this model

is used in practice to select the most appropriate

memory space for data and to search for an

appropriate thread mapping and work group size

from a large design space. To evaluate the

effectiveness of our methodology, we report on

execution speedup using selected benchmark kernels

that cover a wide range of memory access patterns

commonly found in GPGPU workloads. Our

experimental results are reported using the industry

standard heterogeneous programming language,

OpenCL, targeting the NVIDIA GT200 architecture.

Index Terms—GPU memory optimization, memory

access pattern, thread mapping, GPGPU, GPU

computing

I. INTRODUCTION

GPUs are increasingly becoming an important

component of high performance, heterogeneous,

computing platforms by accelerating the ever demanding

data-parallel portion of applications [1]. GPUs achieve

high performance by executing thousands of kernel

instances (i.e., threads) in parallel on different data points

using a Single Instruction Multiple Threads (SIMT)

model while hiding memory latency exploiting zero-

overhead hardware thread switching. Peak performance

of a single GPU has reached the multi-TFLOPS level; the

performance provided by GPU-computing continues to

increase at a rate well surpassing that of multi-core CPU

performance growth [2].

Effectively reaping the benefits of GPUs, however, is

a very challenging task. It requires a deep understanding

of the intricacies of the underlying hardware architecture

and associated close-to-the-metal programming model.

The GPU hardware architecture is designed for high

throughput computing by maximizing memory

bandwidth to feed thousands of parallel threads running

on many cores, while managing a certain amount of

memory latency. The programming model requires

programmers to explicitly map two levels of threads to

data points while considering hardware resource

392 BYUNGHYUN JANG et al : ALGORITHMIC GPGPU MEMORY OPTIMIZATION

constraints. Given the execution model where groups of

threads access memory simultaneously, inattentive thread

mapping generates memory access patterns that conflict

in the underlying memory organization. These

undesirable memory accesses are serialized into a large

number of small, performance-starving memory

transactions and cause cores to sit idle. Programmers

usually apply trial-and-error to tune their code, which is

not only inefficient, but often leaves the resulting code

far from optimized.

In In this paper we apply static memory access pattern

analysis to address several programming and

optimization challenges that arise when mapping serial

data-parallel loops onto massively multithreaded data-

parallel GPU hardware. These challenges include

memory space selection, thread mapping, and work

group sizing. First we present enhancements to our basic

memory access pattern model that was introduced in [3];

our new extensions fully consider the impact of two-level

thread mapping during memory access analysis. Using

this enhanced analysis model, we present a methodology

that finds the best two-level thread mapping while

considering tradeoffs imposed by thread mapping and

work group sizing. These additional constraints are

essential if we want to fully exploit GPU acceleration.

The contributions of this work can be summarized as

follows:

� We show how thread mapping and work group size

impact memory access performance, key issues

receiving little attention in prior work (Section II-B

and Section II-C).

� We extend the memory access pattern analysis

model proposed in [3] to include the impact of two-

level thread mapping on memory access patterns

(Section III).

� We extend the algorithmic memory space selection

proposed in [3] and detail the use of local memory,

which is a very challenging yet important

optimization task [4-9] (Section IV).

� We propose a methodology that algorithmically

searches for optimized thread mappings and work

group sizes by introducing a new set of constraint

metrics (Section V).

� We provide experimental results that demonstrate the

effectiveness of our approach on a diverse set of

benchmarks using the industry standard hetero-

geneous programming language, OpenCL [10]

(Section VI).

The rest of the paper is organized as follows. The next

section briefly summarizes the background of this work,

including the available memory spaces found on current

GPU architectures, and the impact of thread mapping and

work group size on performance. Section III reviews the

mathematical model used to characterize memory access

patterns (first introduced in [3]) and describes how two-

level thread mapping is incorporated into this model. In

sections IV and V, we show two uses of our analysis

model, demonstrating how memory space selection,

thread mapping and work group sizing are accomplished.

We report experimental results in section VI and discuss

the limitations of our approach and future work in section

VII. We conclude the paper in section VIII.

II. BACKGROUND

1. GPU Memory Spaces

Driven by the demand of real-time graphics rendering,

GPUs are comprised of multiple memory spaces that

have very different characteristics aimed at improving

the performance of the device. For applications to obtain

high performance on GPUs, the characteristics and

requirements of these memory spaces must be well

understood. Major factors to consider are whether the

memory is physically located on-chip or off-chip

(relative to the compute units), whether the memory is

automatically cached, and its scope and access

requirements.

Global memory is the default memory space for input

and output data. It is an off-chip memory and not cached,

though it is the most flexible in terms of accessibility and

size. Since accesses to global memory are long latency, it

is imperative to completely utilize the full memory bus

width to deliver as much data as possible in the smallest

number of transactions to the compute units. As such,

performance is very sensitive to the resulting data access

pattern when working with global memory. Ideal access

to global memory occurs when a scheduled group of

threads requests data in the same address range, allowing

requests to be combined into a few accesses that fully

utilize the memory bus—thread groups that are

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.4, AUGUST, 2014 393

scheduled together are called warps1 and combining

memory requests is known as coalescing. When memory

accesses patterns do not fully exploit the properties of

global memory, another memory space is often more

desirable to use [9, 11, 12].

Constant memory is an off-chip memory that is cached

on-chip. As the name suggests, this memory space is

read-only and can hold only a small amount of constant

data. The single-banked cache of constant memory has

broadcast capability, and thus the bandwidth of constant

memory is maximized when all threads in a warp read

the same memory address. Once cached on-chip, data

access latency is as fast as a register-based access,

though the throughput of the cache is decreased by a

factor equal to the number of different requests within a

warp. Note that the inherent properties of constant

memory are not appropriate for every pattern associated

with read-only data; constant memory is best utilized

when all threads of a warp access the same data element

simultaneously.

Texture memory is an abstraction where global

memory is accessed through an on-chip hardware texture

unit. It is designed and optimized for graphics texture

mapping (naturally exploiting 2D locality). The texture

memory offers a number of benefits over global memory:

1) it is cached on-chip, 2) it provides better performance

for uncoalesced accesses, and 3) it has hardware support

for address calculation, automatic boundary checking,

and data interpolation. Random memory access patterns

are better served by texture memory than with global

memory [9].

Local memory is the small, on-chip scratchpad

memory on each compute unit. Utilizing local memory is

key to harnessing the full computing power of the GPU

[4, 9].

Given the large number of processing elements within

a GPU, the long-latency accesses to off-chip memory are

commonly the bottleneck of a compute kernel. To

achieve high performance, it is necessary to load data

into low-latency local memory (we use a term, prefetch,

throughout this paper) as much as possible. Since the

memory is very limited in size and partitioned by active

work groups simultaneously running on a compute unit,

1 In the NVDIA GT200 architecture, warps are the groups of 32 threads,
and memory accesses are issued in units of half warps. Neither CUDA

nor OpenCL have explicit representations of wraps.

the amount of local memory used is one of the factors

that determine the number of work groups that can reside

on a compute unit simultaneously. Nevertheless, the use

of local memory significantly increases software

development complexity. It requires programmers to

recognize the potential benefit from data prefetching and

then manually partition the data. Note that local memory

is only beneficial when there is spatial locality among

threads within a work group to compensate for the extra

cost of explicitly loading data from off-chip memories.

Registers and Private Memory are used to store

automatic variables within a kernel. Compute units have

a large number of registers that must be statically

allocated to a thread for its entire lifetime. Local arrays

and any data that does not fit into registers are spilled

into private memory, which is located off-chip as a part

of global memory. Just as local memory size is a

constraint on performance, register allocation is a major

limiting factor on the number of threads (or work groups)

that can be active on a compute unit. Since neither of

these memory spaces is explicitly programmable by the

programmer, they are not considered during our memory

space selection in this work. However, determining an

appropriate work group size is highly dependent on

register constraints, and so we still need to carefully

consider register usage when designing our work group

sizing algorithm.

2. Impact of Thread Mapping on Performance

In current GPGPU programming models such as

OpenCL and CUDA, each iteration of a serial, data-

parallel loop nest2 is mapped to a thread. Loop nests of

more than one level are typically mapped to multi-

dimensional thread configurations whose dimensions are

less than or equal to the depth of the loops. The

organization of multi-dimensional thread configurations

is akin to multi-dimensional arrays in that threads in the

lowest (finest-grained) dimension are adjacent to each

other, while threads at higher dimensions are a fixed

stride apart (the stride size depends on the extent of the

lower dimensions).

When a kernel is executed, threads are grouped into

hardware scheduling units that we refer to as thread

2 A Data-parallel loop is a set of for loops wherein a set of arrays are
referenced using the associated loop iteration variables

394 BYUNGHYUN JANG et al : ALGORITHMIC GPGPU MEMORY OPTIMIZATION

batches (called warp on NVIDIA platforms). The

scheduled threads are ordered with consecutively

increasing thread IDs (performed after linearization in

the case of multi-dimensional thread configurations). All

threads in a warp execute the same instruction (i.e.,

SIMT execution). The first and second halves of the

warp (16 threads each) interleave execution and issue

memory instructions, thus a half warp is the key unit to

consider in terms of memory access.

Consider the serial data-parallel loop nest shown in

Listing 1 that computes a matrix multiplication. The

loops iterate over three two-dimensional arrays (i.e., A, B,

and C). Intuitively, we would like each thread in the

GPU kernel to compute a single value in the output array.

To do this we map the two outer loop iterators (i1 and i2)

to a two-dimensional thread configuration. We have two

choices to consider here:

� Mapping α: map i1 to the lower dimension of the

thread configuration (labeled tx throughout this

paper) and i2 to the higher dimension of the thread

configuration (labeled ty throughout this paper), or

� Mapping β: map i1 to ty and i2 to tx.

These two mapped kernels are shown in Listing 2 and

Listing 3 respectively.

 for(i1=0; i1< M; i1++)

for(i2=0; i2< N; i2++)

for(i3=0; i3< P; i3++)

C[i1][i2] += A[i1][i3]*B[i3][i2];

Listing 1. Serial matrix multiplication.

 int tx = get global id (0);

int ty = get global id (1);

for(i3=0; i3<P; i3++)

C[tx][ty] += A[tx][i3]*B[i3][ty];

Listing 2. Thread mapping α (i1 maps to tx and i2 maps to ty).

int tx = get global id (0);

int ty = get global id (1);

for(i3=0; i3<P; i3++)

C[ty][tx] += A[ty][i3]*B[i3][tx];

Listing 3. Thread mapping β(i1 maps to ty and i2 maps to tx).

As Listing 2 and 3 show, the thread mapping changes

the memory access pattern (e.g., C[tx][ty] in mapping α,

versus C[ty][tx] in mapping β) and this can have a huge

impact on overall performance. Fig. 1 compares the

performance of the two mappings on an NVIDIA GT200

architecture (GeForce GTX 285) for a range of input

sizes; we see that performance differs by an order of

magnitude. We will show how this performance sensitive

thread mapping is represented in our model in Section

III-A and III-B and how the model is used to derive

optimized thread mappings in Section V.

3. Impact of Work Group Size on Performance

To enable scaling of the number of compute units

while maintaining same level of hardware utilization,

GPUs impose the requirement that compute units are

autonomous execution units (i.e., no direct

communication is possible between compute units). Each

compute unit has the same amount of local hardware

resources on which only threads (or work groups)

assigned to it can operate. Synonymous with compute

units, the programming model divides threads into

independent groups (called work groups in OpenCL),

each of which is identical in the number of threads and

resource usage, so as a problem scales in size, additional

work groups are created, but no other changes to the

algorithm are required. These two concepts, work groups

and compute units, are the enablers of scalability in GPU

computing on the software side and hardware side,

respectively.

Optimization challenges arise due to the fact that per-

compute-unit hardware resources determine the number

Fig. 1. Impact of thread mapping on performance on a NVIDIA

GT200 GPU.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.4, AUGUST, 2014 395

of work groups and threads that can run simultaneously.

Programmers need to carefully consider the work group

size while factoring in these hardware resources to

maximize hardware utilization.

To understand the impact of work group size on

performance, we modified the NVIDIA SDK version of

the matrix multiplication kernel that utilizes local

memory to be able to test a range of work group size

dimensions [13]. Fig. 2 illustrates the performance of

each work group configuration. The performance of the

kernel when the work group size is 512 (32 (ty) × 16 (tx),

upper-left corner in the graph) is approximately 5.9×

better than when it is 32 (2 (ty) × 16 (tx), bottom-left

corner). Even given the same work group size, 512 for

example, the performance differs by 2.6× between two

different configuration (32 (ty) × 16 (tx), upper-left

corner and (2 (ty) × 256 (tx), bottom-right corner).

Finding a good work group size is not intuitive, and is

very complex when programming with local memory.

Static constraints such as the maximum number of active

threads and work groups allowed on a single compute

unit, and the maximum number of threads per work

group must be considered along with the register usage

per thread and the local memory usage per work group.

Changing the size or dimensions of a work group may

end up resulting in very different performance. In this

work, we attempt to assist the programmer by suggesting

a thread mapping and work group size that best utilizes

the underlying hardware by means of static memory

access pattern analysis. In Section V, we present an

algorithm that recommends sizes and dimensions that are

likely to perform well for a given work group.

III. STATIC MEMORY ACCESS PATTERN

ANALYSIS

In Section II-B, we showed how critical it is to choose

a proper mapping of data to thread structure and to

choose proper work group sizes. Before we present our

extension to the previous model which fully incorporates

thread mapping, we briefly recap the basic mathematical

model presented in [3] that captures memory access

patterns in a serial data-parallel loop nest. We then

present our extensions in following subsections.

Consider a data-parallel loop nest of depth D that

accesses an M-dimensional array. The memory access

pattern of the array can be represented as a memory

access vector, m
υρ
, which is a column vector of size M

that describes how each dimension of the array is

accessed. For example, in Listing 1, array A is a two-

dimensional array where the first dimension is traversed

by i1 and the second dimension is traversed by i3; the

corresponding memory access vector is:

1

3
A

i
m

i

 
=  
 

υρ

Although the concept is simple for a trivial example,

significant insight can be gained in the general case by

decomposing the memory access vector to its affine

form:

 Am Mi o= +
ρρ ρ

where M is a memory access matrix whose size is M × D,

i
ρ
is an iteration vector of size D iterating from the

outermost to innermost loop, and o
ρ
 is a column vector

of size M that denotes the starting offset in each

dimension of the array. Note that we only consider loops

with array accesses that can be represented as affine

functions of loop indices and symbolic variables (e.g.,

height, width, etc.). We have found that this restriction

does not limit us since most scientific applications

involve loops possessing affine access patterns [14]. The

memory access patterns of the serial matrix

multiplication loop nest shown in Listing 1 are captured

as follows. A more detailed explanation of how these

memory access patterns are captured is available in [3].

Fig. 2. A map view of the execution times of matrix

multiplication comparing different work group size

configurations (the shade of gray indicates the execution time,

darker is shorter).

396 BYUNGHYUN JANG et al : ALGORITHMIC GPGPU MEMORY OPTIMIZATION

1
1 1 0 0 0

2
3 0 0 1 0

3

A

i
i

m i
i

i

 
      = = +             

ρ

1
3 0 0 1 0

2
2 0 1 0 0

3

B

i
i

m i
i

i

 
      = = +             

ρ

1
1 1 0 0 0

2
2 0 1 0 0

3

C

i
i

m i
i

i

 
      = = +             

ρ

Although our model is based on a simple affine form

commonly found in other well-known loop optimization

models, our proposed analysis model is simpler yet

powerful enough to explain all important memory access

behaviors present on GPUs which other models are not

capable of. Existing models such as the polyhedral [7, 8],

distance/direction vector and unimodular [15, 16] are

developed to improve locality and minimize synchroni-

zation cost targeting single or multicore processors. In

contrast, our analysis model is developed under

consideration of massively multithreaded data-parallel

GPUs where global data communication is not of

primary interest and a batch of threads access memory

simultaneously. Our model also incorporates two-level

thread hierarchy, SIMT execution model, and multiple

memory spaces with distinct access preference.

1. Incorporating Thread Mapping

In our representation, thread mapping simply replaces

iteration indices with thread indices. We use tx, ty, and tz

to denote the thread dimensions, starting from the lowest

dimension. For example, the memory access patterns for

arrays A, B, and C after thread mapping α (Listing 2) and

β (Listing 3) are shown below (parentheses are used to

denote thread mapping β).

()
() 1 0 0 0

()
3 0 0 1 0

3

A

tx ty
tx ty

m ty tx
i

i

 
      = = +             

ρ

()
3 0 0 1 0

()
() 0 1 0 0

3

B

tx ty
i

m ty tx
ty tx

i

 
      = = +             

ρ

()
() 1 0 0 0

()
() 0 1 0 0

3

C

tx ty
tx ty

m ty tx
ty tx

i

 
      = = +             

ρ

Our thread mapping classifies memory access patterns

into inter-thread and intra-thread patterns. The inter-

thread memory access patterns tell us how thread

dimensions are mapped to array dimensions. We collect

this information by extracting the columns of the

memory access matrix that are accessed by thread indices.

For example, the inter-thread memory access patterns

associated with arrays A, B, C in the matrix

multiplication example shown above are composed of the

first two columns of their respective memory access

matrices, respectively:

1 0 () 0 0 ()

, ,
0 0 () 0 1 ()

tx ty tx ty

ty tx ty tx

       
       
       

1 0 ()

0 1 ()

tx ty
and

ty tx

   
   
   

In thread mapping α the “1” in the upper left corner of

the inter-thread memory access matrix for array A

indicates that the highest dimension of the array (the first

row) is accessed by threads in the lowest dimension of

the thread map. In other words, the first column of the

memory access matrix corresponds to tx when

performing the matrix multiplication. In thread mapping

β, the same “1” indicates that the highest dimension of

the array is accessed by threads in the highest dimension

of the thread map, ty.

The intra-thread memory access patterns are the

columns of the memory access matrix that correspond to

iteration indices that are not mapped to threads. In the

matrix multiplication example, the intra-thread access

patterns are represented by the third column of each

memory access matrix:

 [] [] []
0 1 0

3 , 3 , 3
1 0 0

i i and i
     
     
     

for matrices A, B, and C, respectively. These patterns

indicate how the threads that are mapped by the inter-

thread memory access pattern actually access the data.

For example, the lowest dimension of array A

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.4, AUGUST, 2014 397

(represented in the second row of its memory access

matrix), is accessed by i3, meaning that consecutive data

elements will be access by each thread. Matrix B, on the

other hand, is accessed by i3 in it’s highest dimension, so

individual threads will access elements that are a stride

apart. Finally, array C does not use i3 as an iterator, so

the data that Matrix C is accessing will not change within

the third loop. Later we will show how the inter-thread

and intra-thread memory access patterns can be used to

optimize memory accesses on the GPU.

2. Extended Pattern Characterization

In our earlier work [3], we classified memory access

patterns into a number of categories: linear, reverse

linear, shifted, overlapping, non-unit stride, and random

patterns using our mathematical representation. In this

section we extend our analysis to capture more exact

memory access patterns and show that they are in fact

necessary for proper memory space selection, thread

mapping, and work group sizing.

In order to explain how thread mapping impacts the

performance of memory accesses, we extend each of our

memory access pattern classifications to include true and

false sub-patterns. For example, the linear pattern is

divided into true linear and false linear patterns,

depending on which thread dimension accesses each

dimension of the array.

The true linear pattern refers to accesses where threads

with consecutive thread IDs access contiguous and

increasing memory addresses. These patterns are

represented by a “1” in the last row of the column

corresponding to tx in the inter-thread memory access

matrix (or a “-1” in the reverse linear case). Intra-thread

memory access patterns do not play a role in this

classification.

The false linear pattern is similar to the true linear

pattern except that consecutive memory addresses are

accessed by threads with non-consecutive threads IDs.

These patterns are represented by “1” or “-1” in any row

aside from the last row of the column that corresponds to

tx in the inter-thread memory access matrix.

All other patterns are similarly subdivided into true

and false patterns. Fig. 3 shows a graphical view of the

true and false linear patterns, along with their

representations in our model.

3. Coalesced Memory Accesses

When threads of a thread batch execute a memory

instruction, the GPU hardware attempts to convert these

separate accesses into one or a few coalesced accesses

whenever possible—the exact number of accesses

required depends on the size of data type and the access

pattern. Note that the extent to which GPUs can coalesce

memory accesses, and hide the penalty for non-linear

accesses, is highly dependent on the underlying hardware.

In our memory access pattern analysis model, a true

linear pattern and a true reverse linear pattern are

considered as fully coalesced memory accesses. Note

that all other patterns could result in various types of

coalesced access patterns, but we consider them as

uncoalesced patterns for simplicity in this work.

4. Accesses to Same Memory Address

Identifying when different threads read from the same

memory address is crucial for the utilization of constant

memory. Using our model, we can recognize when threads

will read from the same address based on two

requirements: 1) there are no inter-thread memory access

patterns (there are all zeros in the inter-thread entries of the

memory access matrix), and 2) there exists an intra-thread

memory access pattern (at least one non-zero element),

where the non-zero element does not correspond to a loop

variable of the input problem size. If the loop variable

value is a function of the problem size, then the array

could potentially be a candidate for data prefetching.

5. Data Prefetch

Data prefetch is a key mechanism for removing memory

 (a) True linear (b) False Linear

Fig. 3. Linear patterns and their representation in our model (W

denotes the width of a work group).

398 BYUNGHYUN JANG et al : ALGORITHMIC GPGPU MEMORY OPTIMIZATION

bottlenecks and needs to be used effectively if we want to

achieve peak performance on GPUs. Prefetching can be

implemented by using local memory after loop strip

mining is performed3. Efficient use of local memory can

significantly boost performance [4, 9, 12].

In our representation, the potential benefits of data

prefetch can be explored by characterizing any intra-

thread memory access patterns present. If we detect an

intra-thread pattern, this is typically due to loops that are

not explicitly mapped to threads (e.g., loop bodies that

remain inside a kernel body, even after thread mapping is

performed). There are potential benefits to prefetching

this data to local memory and then access those elements

locally. In this work we only consider linear intra-thread

patterns as candidates for prefetch, since other patterns

tend to be less deterministic and make it difficult to

predict the potential benefits of prefetching. Note that

there is no benefit from prefetching data to local memory

in a kernel that does not have an intra-thread access

pattern (e.g., vector addition kernel).

IV. ALGORITHMIC MEMORY SPACE

SELECTION

Having described the characteristics of each memory

space in section II-A and our representation of static

memory access patterns and analysis in section III, we

present a detailed algorithm to identify the best memory

space to place an array.

Our proposed algorithm (see the algorithm 1) takes as

input the memory access pattern, the size of the array, the

read-write information of each array instance, and a

thread index vector and outputs the memory space

selected for the array. While scanning input information,

the algorithm first considers the read-write characteristics

for the array (line 4). If there are any writes to the array,

constant memory will not be selected. If the array has

only read accesses, then we first check whether the

memory access pattern is suitable for constant memory:

the size of the array must be small enough to fit in the

available constant memory and all threads must read the

same address (line 4). Next the algorithm checks if the

memory access pattern meets the requirements for using

3 Loop strip mining is a technique to split a single loop into a nested loop.

The resulting inner loop iterates over a strip of the original loop - the

number of iterations of the inner loop is known as the strip length.

local memory (line 7): and potential for using data

prefetch. Finally the algorithm checks whether the

memory access pattern is coalesced (line 24), and if so,

then global memory is selected. Otherwise texture

memory is selected. A similar procedure is applied to

read-write and write-only data, skipping any

requirements checking for constant memory.

Note that after running the algorithm, multiple

memory spaces may be selected for a single array due to

different memory access patterns for each array instance.

If this is the case, then we make a final selection using

the following priorities: for read-only data 1) texture, 2)

global, 3) local, 4) constant memory, for read-write data

1) global, 2) local, and for write-only data 1) texture, 2)

global, 3) local memory.

Algorithm 1:Memory selection

input : M and o
�

 pairs of all instances of an array

(SMA), the size, read-write, and a thread index

vector (t
�

)

output: Memory space (MS)

1 MS ←0 ;

2 if read-only then

3 for each M ∈ SMA do
4 if Small && Same address read then

5 MS ← MS + Constant;

6 end

7 else if Data preftech then

8 MS ← MS + Local;

9 end

10 else if Coalesced then

11 MS ← MS + Global;

12 end

13

else MS ← MS + Texture;

14

end

15 end

16 else

17 for each M ∈ SMA do
18 if Data prefetch then

19 MS ← MS + Local;

20 end

21 else if Uncoalesced && Write-only then

22 MS ← MS + Texture;

23 end

24 else

25

 MS ← MS + Global;

26

 end

27 end

28 end

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.4, AUGUST, 2014 399

V. ALGORITHMICALLY SELECTING THREAD

MAPPINGS AND WORK GROUP SIZES

As shown in Section II, thread mappings and work

group sizes can have an enormous impact on the

performance of GPU programs. On NVIDIA GPUs,

uncoalesced memory accesses are the biggest detriment

to memory bandwidth, and choosing thread mappings

that are inappropriate for the memory access patterns of a

kernel will significantly degrade performance.

Alternatively, selecting proper thread mappings and

appropriately sized work groups can allow for very

efficient use of local memory to prefetch and cache data,

alleviating a large amount of memory pressure. Our

methodology uses the estimated number of uncoalesced

memory accesses, and the estimated amount of data that

can be stored in local memory as our cost and gain,

respectively, to evaluate the efficiency of combinations

of thread mappings and work group sizes.

1. Cost and Gain Calculation

Our cost and gain calculation is performed on a per-

work-group basis, since all work groups have the same

memory access behavior and hardware resource usage.

Our proposed cost estimation is computed as follows.

Fully coalesced memory patterns (i.e., true linear or true

reverse linear) have no cost. False linear and false

reverse linear patterns, on the other hand, have a cost of

either “H”, “W”, “D”, or the product of a combination of

these, where “H”, “W”, “D” are the height, width, and

depth of the work group. The values that are chosen for

the cost depend on the mapping of thread dimensions to

array access dimensions. For example, in the case of the

mapping α of the matrix multiplication kernel, array A

exhibits a false linear pattern because adjacent threads

are accessing different rows of the array. Since the “1” in

the inter-thread pattern corresponds to tx, and tx is the

width of the work group, the cost becomes “W” in this

case. The cost of array B is zero because tx is not

involved and we assume that higher dimensions (ty in

this case) of the thread map are always a multiple of a

half warp size. The cost for the array C is “H*W” due to

the false linear pattern present in both tx and ty.

Therefore, when the work group size is 8 (ty) × 32 (tx)

the cost associated with arrays A, B, and C are 32 (tx), 0,

and 8 (ty) × 32 (tx), respectively. Fig. 4 shows a

graphical view of our cost calculation for the two

mappings of the matrix multiplication kernel.

The estimated gain is based on the number of elements

in local memory, while taking loop strip mining into

account. Note that data prefetching always entails loop

strip mining. The strip length cannot exceed the size of

the smallest dimension of thread map; otherwise we

could not specify the entire size of the prefetched data

simultaneously using local thread IDs. The gain is

calculated by multiplying the size of smaller dimensions

and size of the strip length. For example, for the α

mapping matrix multiplication kernel, when the work

group size is 8 (ty) × 32 (tx) the local memory accesses

for array A and B are 32 (tx) × 8 (strip length) and 8 (ty)

× 8 (strip length), respectively and the gains become 8

(smaller of 32 and 8) × 8 (strip length) and 8 (smaller of

8 and 8) × 8 (strip length). Choosing the smaller

dimension takes into account the fact that selecting a

smaller strip dictates a higher inner loop trip count. The

final cost and gain are the total of the individual costs

and gains for each array.

2. Resource Constraints and Search Space

There are two per-compute-unit hardware resources to

consider when searching for a good work group size:

Fig. 4. Cost in the two thread mapping schemes for matrix

multiplication kernel when the size of work group is 32(tx)

×8(ty): X indicates uncoalesced memory accesses and SL

denotes the loop strip length.

400 BYUNGHYUN JANG et al : ALGORITHMIC GPGPU MEMORY OPTIMIZATION

registers and local memory. Registers are a hardware

resource that is shared among all active threads on a

single compute unit (directly related to the number of

active threads). Local memory is shared by active work

groups (directly related to the number of active work

groups). The following two equations show how the two

hardware resources are related to each other in terms of

work group size.

#Registers Threads WG Registers

Thread WG CU CU
× × < (1)

#Local Memory WG Local Memory

Work Group CU CU
× < (2)

Eq. (1) implies that given a particular register pressure

ratio (denoted as #Registers / Thread in the equation)

computed on a per-kernel-body basis, the number of

active work groups (denoted as #WG / CU) must

decrease as the work group size (denoted as #Threads /

WG) increases. Eq. (2) indicates that if the number of

active work groups decreases, the amount of local

memory that each work group can use (denoted as

#Local Memory / WG) increases. When a kernel does not

use local memory, Eq. (2) can be ignored. When multi-

dimensional thread mapping is involved, there are a

number of choices for different combinations for

selecting the dimension sizes of a work group. In this

case, we search for all possible choices where the lowest

dimension size (tx) is multiple of a half warp size (the

key unit for memory accesses). For example, the work

group size of 256 in a two-dimensional thread mapping

has 2 (ty) × 128 (tx), 4 (ty) × 64 (tx), 8 (ty) × 32 (tx), and

16 (ty) × 16 (tx) as possible combinations.

3. Our Proposed Methodology

Hardware vendors usually provide ideal work group

sizes for their GPUs [9, 12, 17, 18]4. Since hardware

resources almost always constrain the work group size, our

proposed search space starts from the largest ideal size and

progresses down toward the minimum acceptable size

until we find enough good candidates (specified by the

programmer). For NVIDIA GPUs, the ideal work group

size is not the maximum possible number of active threads

4 The ideal work group size can be different across GPU architectures.

NVIDIA recommends that GPUs with compute capability 1.3 (e.g., GTX

285) should have between 256 and 512 threads per work group.

per compute unit, as creating multiple work groups will

allow for better hardware utilization.

Our methodology to search for a thread mapping and

work group size is summarized in Algorithm 2. Given

the memory space selections provided by Algorithm 1,

we start with the ideal work group size that allows for at

least two work groups to be active per compute unit after

accounting for register pressure (Eq. (1) is used). From

there, we decrease the work group size using predefined

ordered sets of work group configurations, calculating

the cost and gain of each configuration. Finally, the

selection of candidates that produce optimized thread

mappings and work group sizes is based on the following

priority. When local memory is used, (i.e., there exists

positive gain), we use 1) high gain, 2) low cost, 3) large

work group size, otherwise we use, 1) low cost, 2) high

occupancy, 3) high number of active work groups. Note

that when data is prefetched into local memory, the

number of device memory accesses tends to decrease

significantly, implying that the associated cost is reduced.

Note also that if local memory is not used, the work

group size does not play any role.

Algorithm 2: Searching for beneficial thread mappings and

work group sizes.

input : Memory access patterns and memory space

selections for arrays, a thread index vector, the

number of registers used, the desired number of

candidates for good work group sizes (C)

output : Candidates for a good thread mapping and work

group size

1 Compute the largest starting work group size from the

predefined work group configuration table (WGT) that

allows at least 2 active work groups;

2 while WGT is not empty do

3

4

5

Compute the number of active work groups (AWG)

based on the register count;

Compute the amount of local memory required

(ALM);

if ALM ≤ local memory size then

6

7

Compute the cost and gain;

Push it into the priority queue (PQ) based on our

priority;

8 end

9

Get the next smaller work group size configuration

from WGT;

10 end

11 Output the first C number of elements from PQ;

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.4, AUGUST, 2014 401

Consider the mapping β in the matrix multiplication

kernel. According to Algorithm 1, arrays A and B

possess access patterns that can benefit from data

prefetching using local memory, and the output array C

does not, so it is placed in global memory. The search

begins with the largest ideal work group size, 512. Since

the register pressure allows for 2 active work groups on a

single compute unit, it is a valid starting size. Because

the algorithm uses a two-dimensional thread mapping,

we search all predefined configurations of a two-

dimensional work group (attempt #1 through #12 in

Table 1). Note that the lowest dimension (tx) is a

multiple of the warp size. For each work group

configuration containing the same total number of

threads, we compute the cost and gain and store it in a

priority queue data structure. The algorithm continues

this process until it visits all entries of the predefined

work group size configuration table. Finally, the

algorithm outputs the specified number of elements

(denoted as C in the algorithm) in the priority queue.

Table 1 summarizes the work group search process along

with metrics, our rank, and actual measured performance

in the order of search.

VI. EXPERIMENTAL RESULTS

We evaluate our proposed methodology using four

different algorithms: two common numerical kernels and

two complex real world kernels. These four benchmarks

contain a wide range of memory access patterns, thread

configurations, and resource requirements. For

comparison purposes, two different versions of the

algorithm were implemented for each benchmark: one

using only the default (global) memory for each array,

and the other using the memory spaces selected by

Algorithm 1. For the latter implementation, we use our

framework to generate suggested thread mappings and

work group sizes, and we compare the performance of

our suggested configurations against actual execution

times.

The experiments were conducted on an NVIDIA

Geforce GTX 285 GPU using the OpenCL programming

language and the CUDA 4.2 Toolkit and SDK (graphic

device driver 295.41). The host system is configured

with a 2.66 GHz Intel Core 2 Duo running 64-bit Linux,

with 2 GB of main memory.

The first kernel evaluated is vector addition. This is a

very simple kernel, and is usually the first kernel that a

programmer learns for GPU programming. In vector

addition, there is a single loop that iterates over three

one-dimensional arrays, and each array exhibits the same

access pattern: a true linear inter-thread pattern and no

intra-thread pattern. Since the kernel has only one loop,

the only possible thread mapping is to a one-dimensional

thread configuration. The number of registers required

per thread is 3.

According to Algorithm 1, global memory is selected

for all arrays. Since the number of registers used does not

restrict the recommended work group size, we start with

the largest work group size that hardware vendor

recommends (512). For any configuration, the cost and

the gain are always zero since all memory access patterns

are coalesced and no local memory is utilized. Algorithm

2 repeats the cost and gain calculations on the ordered,

predefined set of work group sizes and pushes each result

into the priority queue. The work group configurations

that remain at the frontend of the priority queue become

the candidates for selection. Table 2 summarizes the

experimental results. We see that our ranking of work

group sizes closely aligns with the actual measured

performance.

The second benchmark kernel is matrix-vector

multiplication. This kernel has a two-level nested loop

that iterates over arrays that differ in their number of

Table 1. An example of algorithmic thread mapping and work

group size search: matrix multiplication, †ty×tx (total number of

threads), * measured execution time in milliseconds when input

matrix size is 1024×1024. Costs are all zeros. WGS=Work

Group Size, AWG=the number of Active Work Groups,

OR=Our Rank

WGS† AWG GAIN OR MET*

1 2×256 (512) 2 2×2 + 2×2 (8) 9 29.31

2 4×128 (512) 2 4×4 + 4×4 (32) 6 21.49

3 8×64 (512) 2 8×8 + 8×8 (128) 3 15.58

4 16×32 (512) 2 16×16 + 16×16 (512) 1 12.73

5 32×16 (512) 2 16×16 + 16×16 (512) 1 11.30

6 2×128 (256) 4 2×2 + 2×2 (8) 10 28.16

7 4×64 (256) 4 4×4 + 4×4 (32) 7 20.77

8 8×32 (256) 4 8×8 + 8×8 (128) 4 15.35

9 16×16 (256) 4 16×16 + 16×16 (512) 2 11.19

10 2×64 (128) 8 2×2 + 2×2 (8) 11 26.15

11 4×32 (128) 8 4×4 + 4×4 (32) 8 19.70

12 8×16 (128) 8 8×8 + 8×8 (128) 5 14.77

402 BYUNGHYUN JANG et al : ALGORITHMIC GPGPU MEMORY OPTIMIZATION

dimensions. There are two one-dimensional arrays and

one two-dimensional array. Again, there is only one

choice for thread mapping: the memory access pattern of

the one-dimensional output (write-only) array is

[]1 0
2

tx

i

 
 
 

 and it exhibits a true linear inter-thread

pattern with no intra-thread access. The memory access

pattern of the one-dimensional input (read-only) array is

[]0 1
2

tx

i

 
 
 

 and possesses no inter-thread accesses and is

a true linear intra-thread pattern. Finally, the memory

access pattern of the two-dimensional input (read-only)

array is captured as
1 0

0 1 2

tx

i

   
   
   

 and exhibits a false

linear inter-thread pattern and a true linear intra-thread

pattern. Given the memory access patterns, algorithm 1

selects global memory for the first array. The second and

third arrays exhibit the potential of benefiting from data

prefetching, so for the second array texture memory is

selected with prefetching to local memory, and for the

third array global memory is selected, with prefetching to

local memory.

In this kernel, the amount of local memory used is a

major limiting factor that influences the work group size.

Due to the local memory usage, the first valid work

group size we can consider is 32. Table 3 summarizes the

search process, and includes the cost and gain, measured

execution time, and resulting speedup when compared to

using only global memory.

The next kernel studied is a real world application that

computes radiological paths—the most computationally

expensive step in medical image reconstruction [19]. The

particular algorithm is called the improved Siddon

algorithm [20] and is the most widely used in its domain.

The algorithm computes the contribution of the various

parts of the body to the radiation received by a number of

X-ray detector cells. For each radiological path from the

radiation source to a detector cell, the local intensities of

object cells (i.e., cells in the body) that the rays hit are

integrated along the path. Given the number of detector

cells and the radiation emission, radiological paths are

calculated more than a million times. The kernel involves

four arrays: one three-dimensional read-only array, one

two-dimensional write-only array, and two one-

dimensional read-only arrays. Given that we decide to

map this loop to a two-dimensional thread configuration,

there are two potential mappings. Here we show only the

better of the mappings, which has the following memory

access patterns (the order of the arrays is the same as the

order when they were listed above).

0 0 0
1 0 0

0 0 0 , ,
0 1 0

0 0 3 3

tx tx

ty ty

Z i i

     
      
                 

 [] []1 0 0 , 0 1 0

3 3

tx tx

ty ty

i i

   
   
   
      

Following the order shown above, memory access

patterns are classified as: no inter-thread and random

intra-thread pattern, true linear inter-thread and no intra-

thread pattern, true linear inter-thread and no intra-thread

pattern, and true linear inter-thread and no intra-thread

pattern. Given these pattern classifications, our memory

selection algorithm selects texture memory for the first

array and global memory for the rest of the arrays. The

algorithm then searches to find good candidates for thread

mapping and work group size, as shown in Table 4.

The final example is also taken from a real world

application called Speeded Up Robust Features (SURF)

[21]. The SURF algorithm is used to detect features in

images for applications like stabilization and panorama

stitching. The particular kernel we tested is called non-

Table 2. Experimental results of vector addition when the input

size is 225 and the register count is 3. Acronyms and units are

the same as in Table 1

WGS AWG Cost Gain OC OR MET

1 512 2 0 0 100% 3 3.39

2 256 4 0 0 100% 2 3.38

3 128 8 0 0 100% 1 3.39

4 64 8 0 0 50% 4 3.60

5 32 8 0 0 25% 5 5.89

6 16 8 0 0 25% 5 11.61

Table 3. Experimental results of matrix-vector multiplication

when each dimension of the input arrays are 4096 and the

register count is 17. † Speedup over default global memory

space. SU = Speedup, Other acronyms and units are the same as

in Table 1

WGS AWG Cost Gain OR MET SU†

1 32 4 32 32×32+32 (1056) 1 3.25 6.57

2 16 4 16 16×16+16 (272) 2 3.95 6.87

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.4, AUGUST, 2014 403

max suppression (NMS), which plays a critical role in the

SURF algorithm. The kernel looks for the largest value

in a stack of images which have been subjected to

convolutions with different filters. The kernel involves

four arrays: three two-dimensional read-only arrays

which possess the same memory access pattern, and one

two-dimensional write-only array. We map this loop to a

two-dimensional thread configuration and again only

show the better of the two possible mapping choices. The

memory access patterns are as follows.

0 0 1 0 0

,
0 0 0 1 0

3 3

tx tx
Z

ty ty
Z

i i

   
      
               

The patterns are classified as no inter-thread and

random intra-thread pattern, and true linear inter-thread

and no intra-thread pattern, respectively. Texture

memory is selected for the first three arrays and global

memory is selected for the last array. The results of the

work group size search are summarized in Table 5.

VII. LIMITATIONS OF OUR APPROACH AND

FUTURE WORK

Our analysis models and optimization techniques are

best employed when considering memory-intensive

kernels (i.e., where the ratio of ALU to memory

operations is low). In general, when arithmetic intensity

is high, the GPU hardware can perform efficient memory

latency hiding. If hardware can hide most memory

latencies, then memory optimizations will have a limited

performance impact. Although this is a limitation, in

reality the majority of GPGPU kernels are memory-

bound.

Similarly, since our cost metrics do not assign weights

to different arrays based on their potential contribution to

overall memory contention, our approach may not find

the best possible result as the number of memory access

patterns and associated arrays in a kernel increase. For

most kernels, however, our methodology has been shown

to work very well, and our simple, highly automated

algorithms accurately represent the complex interplay

between GPU hardware and software.

Presently, our framework only handles standard uses

of the memory spaces. Programmers frequently utilize

memory spaces differently. A good example is local

memory. Instead of using local memory for data

prefetching, it can be used to avoid uncoalesced accesses.

Texture memory can be effectively used to exploit

hardware-based interpolation and filtering present in

selected application domains.

We made several assumptions and simplifications in

this work as well. Our thread mapping assumes that the

problem size is a multiple of a half warp. Real-world

applications are unlikely to always meet this requirement,

so techniques such as data padding are required to apply

Table 5. Experimental result of NMS algorithm when input

image size is 256 × 256. The register count is 15. † Speedup

over default global memory space. Cost and Gain are all zeros.

Acronyms and units are the same as in Table 1

WGS AWG OC OR MET SU†

1 2×256 (512) 2 100% 3 16.8 5.11

2 4×128 (512) 2 100% 3 16.8 5.12

3 8×64 (512) 2 100% 3 16.8 5.12

4 16×32 (512) 2 100% 3 16.8 5.13

5 32×16 (512) 2 100% 3 16.9 5.12

6 2×128 (256) 4 100% 2 16.8 5.13

7 4×64 (256) 4 100% 2 16.8 5.12

8 8×32 (256) 4 100% 2 16.8 5.12

9 16×16 (256) 4 100% 2 16.9 5.11

10 2×64 (128) 8 100% 1 16.8 5.11

11 4×32 (128) 8 100% 1 16.8 5.12

12 8×16 (128) 8 100% 1 16.9 5.13

13 2×32 (64) 8 50% 4 16.9 5.12

14 4×16 (64) 8 50% 4 16.9 5.13

15 2×16 (32) 8 25% 5 17.1 5.08

Table 4. Experimental results for the radiological path

calculation using an input image size of 256 × 32. The register

count is 28. † Speedup over default global memory space. Cost

and Gain are all zeros. Acronyms and units are the same as in

Table 1

WGS AWG OC OR MET SU†

1 2×128 (256) 2 50% 3 176.90 1.61

2 4×64 (256) 2 50% 3 176.50 1.61

3 8×32 (256) 2 50% 3 174.17 1.60

4 16×16 (256) 2 50% 3 164.92 1.62

5 2×64 (128) 4 50% 2 169.85 1.58

6 4×32 (128) 4 50% 2 170.16 1.58

7 8×16 (128) 4 50% 2 164.75 1.63

8 2×32 (64) 8 50% 1 166.09 1.59

9 4×16 (64) 8 50% 1 163.01 1.63

10 2×16 (32) 8 25% 4 162.35 1.63

404 BYUNGHYUN JANG et al : ALGORITHMIC GPGPU MEMORY OPTIMIZATION

our methodology. We also assume that the register size

per thread of a kernel is fixed and therefore it always has

priority to determine the work group size over local

memory. However, the programmer can perform explicit

actions to reduce the number of registers if a certain

number of active threads are desired. The programmer

can also give priority to local memory usage to increase

performance. Another assumption made is that the data

we are working with is naturally-aligned (e.g., int or

float). Though this assumption is true in most common

cases, our methodology would require some

modifications to work for unaligned data.

Finally, our analysis model is device dependent.

Should the characteristics of memory spaces change, our

analysis needs to be updated accordingly. For example,

latest commercial GPUs have an on-chip cache for global

memory, so the sensitivity of performance to

uncoalesced memory accesses should be reduced

substantially. In this case our cost metrics need updating.

VIII. CONCLUSION

Current programming languages such as OpenCL and

CUDA have made it easier for programmers to accelerate

their code on GPU devices, though to reap the full

performance benefits offered by these devices is still

heavily dependent on a programmer’s ability to fine tune

their code to the underlying hardware—this is where the

steep learning curve of GPU programming actually exists.

Tools or frameworks that guide the programmer or

automatically select optimizations can have a huge

impact on the wider adoption of GPUs.

Memory continues to be a key bottleneck in many

GPU applications. Selecting and applying the right set of

memory optimizations is a daunting programming task.

We have focused our work on characterizing memory

access patterns, and developed tools and algorithms to

address this important challenge. In this paper we have

shown how thread mapping and work group size impacts

memory access patterns and thus performance. We have

presented our model for memory access pattern analysis

that also considers how to select an appropriate thread

mapping and work group size.

Although our methodology is used to assist a

programmer in developing highly optimized code, the

idea can also be used to develop an automatic source-to-

source parallelizing compiler, or can be implemented as

an optimization pass during compilation.

REFERENCES

[1] J. D. Owens, M. Houston, D. Luebke, S. Green, J.

E. Stone, and J. C. Phillips, “GPU Computing,” in

Proceedings of the IEEE, vol. 96, 2008, pp. 879–

899.

[2] J. Vetter, “Toward exascale computational science

with heterogeneous processing,” in GPGPU ’10:

Proceedings of the 3rd Workshop on General-

Purpose Computation on Graphics Processing

Units. New York, NY, USA: ACM, 2010, pp. 1–1.

[3] B. Jang, D. Schaa, P. Mistry, and D. Kaeli,

“Exploiting memory access patterns to improve

memory performance in data parallel

architectures,” IEEE Transactions on Parallel and

Distributed Systems, 2010.

[4] M. Silberstein, A. Schuster, D. Geiger, A. Patney,

and J. D. Owens, “Efficient computation of sum-

products on GPUs through softwaremanaged

cache,” in ICS ’08: Proceedings of the 22nd annual

international conference on Supercomputing. New

York, NY, USA: ACM, 2008, pp. 309–318.

[5] K. Fatahalian, J. Sugerman, and P. Hanrahan,

“Understanding the efficiency of GPU algorithms

for matrix-matrix multiplication,” in HWWS ’04:

Proceedings of the ACM SIGGRAPH/

EUROGRAPHICS conference on Graphics

hardware. New York, NY, USA: ACM, 2004, pp.

133–137.

[6] C. Jiang and M. Snir, “Automatic tuning matrix

multiplication performance on graphics hardware,”

in Parallel Architectures and Compilation

Techniques, 2005. PACT 2005. 14th International

Conference on, Sept. 2005, pp. 185–194.

[7] M. M. Baskaran, U. Bondhugula, S.

Krishnamoorthy, J. Ramanujam, A. Rountev, and P.

Sadayappan, “Automatic data movement and

computation mapping for multi-level parallel

architectures with explicitly managed memories,”

in PPoPP ’08: Proceedings of the 13th ACM

SIGPLAN Symposium on Principles and practice

of parallel programming. New York, NY, USA:

ACM, 2008, pp. 1–10.

[8] M. M. Baskaran, U. Bondhugula, S.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.14, NO.4, AUGUST, 2014 405

Krishnamoorthy, et. al., “A compiler framework for

optimization of affine loop nests for GPGPUs,” in

ICS ’08: Proceedings of the 22nd annual

international conference on Supercomputing. New

York, NY, USA: ACM, 2008, pp. 225–234.

[9] NVIDIA, “NVIDIA CUDA C Programming Guide

4.2.” [Online]. Available: {http://www.nvidia.com/

cuda/}

[10] Khronos Group, “OpenCL 1.0 Specification,” Dec.

2008. [Online]. Available: {http://www.khronos.org/

opencl/}

[11] NVIDIA, “OpenCL Programming Guide for the

CUDA Architecture,” May 2010. [Online].

Available:{http://developer.nvidia.com/object/cuda

_3_1_ downloads .html}

[12] AMD, “OpenCL Programming Guide,” Jun 2013.

[Online]. Available: {http://developer.amd.com/}

[13] NVIDIA, “GPU Computing SDK Code Samples

4.2.” [Online]. Available: {www.nvidia.com/object/

cuda develop.html}

[14] S. Ghosh, M. Martonosi, and S. Malik, “Cache

miss equations: an analytical representation of

cache misses,” in ICS ’97: Proceedings of the 11th

international conference on Supercomputing. New

York, NY, USA: ACM, 1997, pp. 317–324.

[15] M. E. Wolf and M. S. Lam, “A data locality

optimizing algorithm,” in PLDI ’91: Proceedings of

the ACM SIGPLAN 1991 conference on

Programming language design and implementation.

New York, NY, USA: ACM, 1991, pp. 30–44.

[16] M. E. Wolf, M. S. Lam, “A loop transformation

theory and an algorithm to maximize parallelism,”

IEEE Trans. Parallel Distrib. Syst., vol. 2, no. 4, pp.

452– 471, 1991.

[17] AMD, “Stream Computing Forum.” [Online].

Available: {http: //forums.amd.com/devforum/}

[18] NVIDIA, “CUDA Forum.” [Online]. Available:

{http://forums.nvidia. com/}

[19] B. Jang, D. Kaeli, S. Do, and H. Pien, “Multi GPU

implementation of iterative tomographic recon-

struction algorithms,” in ISBI’09: Proceedings of

the Sixth IEEE international conference on

Symposium on Biomedical Imaging. Piscataway,

NJ, USA: IEEE Press, 2009, pp. 185–188.

[20] M. Christiaens, B. De Sutter, K. De Bosschere, J.

Van Campenhout, and I. Lemahieu, “A fast, cache-

aware algorithm for the calculation of radiological

paths exploiting subword parallelism,” Journal of

Systems Architecture, vol. 45, no. 10, pp. 781–790,

4 1999.

[21] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF:

Speeded Up Robust Features,” in Computer Vision

ECCV 2006, ser. Lecture Notes in Computer

Science. Springer Berlin / Heidelberg, 2006, vol.

3951, pp. 404–417.

Byunghyun Jang received a BS in

Bio-Mechatronic Engineering from

Sungkyunkwan University, South

Korea, a MS degrees in Computer

Science from Oklahoma State

University, Stillwater OK, and a PhD

in Computer Engineering from

Northeastern University, Boston MA. He is an Assistant

Processor of the Computer and Information Science

Department at the University of Mississippi, University,

MS where he directs the heterogeneous systems research

laboratory (HEROES). Prior to joining Ole Miss in 2012,

he spent several years at AMD and Samsung. His

research focuses on GPU computing, CPU-GPU

heterogeneous computing, hardware architecture and

compilers for data parallel architectures, and automatic

parallelization.

Minsu Choi received the B.S., M.S.,

and Ph.D. degrees from Oklahoma

State University, Stillwater, in 1995,

1998, and 2002, respectively, all in

computer science. He is currently an

Associate Professor with the

Department of Electrical and

Computer Engineering, Missouri University of Science

and Technology (formerly U of Missouri-Rolla), Rolla.

His research mainly focuses on computer architecture

and VLSI, nanoelectronics, embedded systems, fault

tolerance, testing, quality assurance, reliability modeling

and analysis, configurable computing, parallel and

distributed systems, and dependable instrumentation and

measurement. Dr. Choi is a member of the Golden Key

National Honor Society.

406 BYUNGHYUN JANG et al : ALGORITHMIC GPGPU MEMORY OPTIMIZATION

Kyung Ki Kim received the B.S. and

M.S. degrees in electronic engineering

from Yeungnam University, Kyeong-

san, South Korea, in 1995 and 1997,

respectively, and the Ph.D. degree in

computer engineering from North-

eastern University, Boston, MA, in

2008. In 2008, he was a member of the technical staff

with Sun Microsystems, Santa Clara, CA, where he was

involved in ROCK project. In 2009, he was a senior

researcher with Illinois Institute of Technology, Chicago,

IL. Currently, he is an assistant professor at Daegu

University, South Korea. His current research focuses on

nanoscale CMOS design, high speed low power VLSI

design, analog VLSI circuit design, electronic CAD and

nano-electronics.

