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Abstract—The performance of General-Purpose 

computation on Graphics Processing Units (GPGPU) 

is heavily dependent on the memory access behavior. 

This sensitivity is due to a combination of the 

underlying Massively Parallel Processing (MPP) 

execution model present on GPUs and the lack of 

architectural support to handle irregular memory 

access patterns. Application performance can be 

significantly improved by applying memory-access- 

pattern-aware optimizations that can exploit 

knowledge of the characteristics of each access 

pattern. In this paper, we present an algorithmic 

methodology to semi-automatically find the best 

mapping of memory accesses present in serial loop 

nest to underlying data-parallel architectures based 

on a comprehensive static memory access pattern 

analysis. To that end we present a simple, yet 

powerful, mathematical model that captures all 

memory access pattern information present in serial 

data-parallel loop nests. We then show how this model 

is used in practice to select the most appropriate 

memory space for data and to search for an 

appropriate thread mapping and work group size 

from a large design space. To evaluate the 

effectiveness of our methodology, we report on 

execution speedup using selected benchmark kernels 

that cover a wide range of memory access patterns 

commonly found in GPGPU workloads. Our 

experimental results are reported using the industry 

standard heterogeneous programming language, 

OpenCL, targeting the NVIDIA GT200 architecture.   

 

Index Terms—GPU memory optimization, memory 

access pattern, thread mapping, GPGPU, GPU 

computing    

I. INTRODUCTION 

GPUs are increasingly becoming an important 

component of high performance, heterogeneous, 

computing platforms by accelerating the ever demanding 

data-parallel portion of applications [1]. GPUs achieve 

high performance by executing thousands of kernel 

instances (i.e., threads) in parallel on different data points 

using a Single Instruction Multiple Threads (SIMT) 

model while hiding memory latency exploiting zero-

overhead hardware thread switching. Peak performance 

of a single GPU has reached the multi-TFLOPS level; the 

performance provided by GPU-computing continues to 

increase at a rate well surpassing that of multi-core CPU 

performance growth [2]. 

Effectively reaping the benefits of GPUs, however, is 

a very challenging task. It requires a deep understanding 

of the intricacies of the underlying hardware architecture 

and associated close-to-the-metal programming model. 

The GPU hardware architecture is designed for high 

throughput computing by maximizing memory 

bandwidth to feed thousands of parallel threads running 

on many cores, while managing a certain amount of 

memory latency. The programming model requires 

programmers to explicitly map two levels of threads to 

data points while considering hardware resource 
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constraints. Given the execution model where groups of 

threads access memory simultaneously, inattentive thread 

mapping generates memory access patterns that conflict 

in the underlying memory organization. These 

undesirable memory accesses are serialized into a large 

number of small, performance-starving memory 

transactions and cause cores to sit idle. Programmers 

usually apply trial-and-error to tune their code, which is 

not only inefficient, but often leaves the resulting code 

far from optimized.  

In In this paper we apply static memory access pattern 

analysis to address several programming and 

optimization challenges that arise when mapping serial 

data-parallel loops onto massively multithreaded data-

parallel GPU hardware. These challenges include 

memory space selection, thread mapping, and work 

group sizing. First we present enhancements to our basic 

memory access pattern model that was introduced in [3]; 

our new extensions fully consider the impact of two-level 

thread mapping during memory access analysis. Using 

this enhanced analysis model, we present a methodology 

that finds the best two-level thread mapping while 

considering tradeoffs imposed by thread mapping and 

work group sizing. These additional constraints are 

essential if we want to fully exploit GPU acceleration. 

The contributions of this work can be summarized as 

follows: 

� We show how thread mapping and work group size 

impact memory access performance, key issues 

receiving little attention in prior work (Section II-B 

and Section II-C). 

� We extend the memory access pattern analysis 

model proposed in [3] to include the impact of two-

level thread mapping on memory access patterns 

(Section III). 

� We extend the algorithmic memory space selection 

proposed in [3] and detail the use of local memory, 

which is a very challenging yet important 

optimization task [4-9] (Section IV). 

� We propose a methodology that algorithmically 

searches for optimized thread mappings and work 

group sizes by introducing a new set of constraint 

metrics (Section V).  

� We provide experimental results that demonstrate the 

effectiveness of our approach on a diverse set of 

benchmarks using the industry standard hetero- 

geneous programming language, OpenCL [10] 

(Section VI). 

 

The rest of the paper is organized as follows. The next 

section briefly summarizes the background of this work, 

including the available memory spaces found on current 

GPU architectures, and the impact of thread mapping and 

work group size on performance. Section III reviews the 

mathematical model used to characterize memory access 

patterns (first introduced in [3]) and describes how two-

level thread mapping is incorporated into this model. In 

sections IV and V, we show two uses of our analysis 

model, demonstrating how memory space selection, 

thread mapping and work group sizing are accomplished. 

We report experimental results in section VI and discuss 

the limitations of our approach and future work in section 

VII. We conclude the paper in section VIII. 

II. BACKGROUND 

1. GPU Memory Spaces 

 

Driven by the demand of real-time graphics rendering, 

GPUs are comprised of multiple memory spaces that 

have very different characteristics aimed at improving 

the performance of the device. For applications to obtain 

high performance on GPUs, the characteristics and 

requirements of these memory spaces must be well 

understood. Major factors to consider are whether the 

memory is physically located on-chip or off-chip 

(relative to the compute units), whether the memory is 

automatically cached, and its scope and access 

requirements. 

Global memory is the default memory space for input 

and output data. It is an off-chip memory and not cached, 

though it is the most flexible in terms of accessibility and 

size. Since accesses to global memory are long latency, it 

is imperative to completely utilize the full memory bus 

width to deliver as much data as possible in the smallest 

number of transactions to the compute units. As such, 

performance is very sensitive to the resulting data access 

pattern when working with global memory. Ideal access 

to global memory occurs when a scheduled group of 

threads requests data in the same address range, allowing 

requests to be combined into a few accesses that fully 

utilize the memory bus—thread groups that are 
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scheduled together are called warps1  and combining 

memory requests is known as coalescing. When memory 

accesses patterns do not fully exploit the properties of 

global memory, another memory space is often more 

desirable to use [9, 11, 12].  

Constant memory is an off-chip memory that is cached 

on-chip. As the name suggests, this memory space is 

read-only and can hold only a small amount of constant 

data. The single-banked cache of constant memory has 

broadcast capability, and thus the bandwidth of constant 

memory is maximized when all threads in a warp read 

the same memory address. Once cached on-chip, data 

access latency is as fast as a register-based access, 

though the throughput of the cache is decreased by a 

factor equal to the number of different requests within a 

warp. Note that the inherent properties of constant 

memory are not appropriate for every pattern associated 

with read-only data; constant memory is best utilized 

when all threads of a warp access the same data element 

simultaneously. 

Texture memory is an abstraction where global 

memory is accessed through an on-chip hardware texture 

unit. It is designed and optimized for graphics texture 

mapping (naturally exploiting 2D locality). The texture 

memory offers a number of benefits over global memory: 

1) it is cached on-chip, 2) it provides better performance 

for uncoalesced accesses, and 3) it has hardware support 

for address calculation, automatic boundary checking, 

and data interpolation. Random memory access patterns 

are better served by texture memory than with global 

memory [9]. 

Local memory is the small, on-chip scratchpad 

memory on each compute unit. Utilizing local memory is 

key to harnessing the full computing power of the GPU 

[4, 9].  

Given the large number of processing elements within 

a GPU, the long-latency accesses to off-chip memory are 

commonly the bottleneck of a compute kernel. To 

achieve high performance, it is necessary to load data 

into low-latency local memory (we use a term, prefetch, 

throughout this paper) as much as possible. Since the 

memory is very limited in size and partitioned by active 

work groups simultaneously running on a compute unit, 

                                            
1 In the NVDIA GT200 architecture, warps are the groups of 32 threads, 
and memory accesses are issued in units of half warps. Neither CUDA 

nor OpenCL have explicit representations of wraps. 

the amount of local memory used is one of the factors 

that determine the number of work groups that can reside 

on a compute unit simultaneously. Nevertheless, the use 

of local memory significantly increases software 

development complexity. It requires programmers to 

recognize the potential benefit from data prefetching and 

then manually partition the data. Note that local memory 

is only beneficial when there is spatial locality among 

threads within a work group to compensate for the extra 

cost of explicitly loading data from off-chip memories. 

Registers and Private Memory are used to store 

automatic variables within a kernel. Compute units have 

a large number of registers that must be statically 

allocated to a thread for its entire lifetime. Local arrays 

and any data that does not fit into registers are spilled 

into private memory, which is located off-chip as a part 

of global memory. Just as local memory size is a 

constraint on performance, register allocation is a major 

limiting factor on the number of threads (or work groups) 

that can be active on a compute unit. Since neither of 

these memory spaces is explicitly programmable by the 

programmer, they are not considered during our memory 

space selection in this work. However, determining an 

appropriate work group size is highly dependent on 

register constraints, and so we still need to carefully 

consider register usage when designing our work group 

sizing algorithm. 

 

2. Impact of Thread Mapping on Performance 

 

In current GPGPU programming models such as 

OpenCL and CUDA, each iteration of a serial, data-

parallel loop nest2 is mapped to a thread. Loop nests of 

more than one level are typically mapped to multi-

dimensional thread configurations whose dimensions are 

less than or equal to the depth of the loops. The 

organization of multi-dimensional thread configurations 

is akin to multi-dimensional arrays in that threads in the 

lowest (finest-grained) dimension are adjacent to each 

other, while threads at higher dimensions are a fixed 

stride apart (the stride size depends on the extent of the 

lower dimensions). 

When a kernel is executed, threads are grouped into 

hardware scheduling units that we refer to as thread 

                                            
2 A Data-parallel loop is a set of for loops wherein a set of arrays are 
referenced using the associated loop iteration variables 
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batches (called warp on NVIDIA platforms). The 

scheduled threads are ordered with consecutively 

increasing thread IDs (performed after linearization in 

the case of multi-dimensional thread configurations). All 

threads in a warp execute the same instruction (i.e., 

SIMT execution). The first and second halves of the 

warp (16 threads each) interleave execution and issue 

memory instructions, thus a half warp is the key unit to 

consider in terms of memory access. 

Consider the serial data-parallel loop nest shown in 

Listing 1 that computes a matrix multiplication. The 

loops iterate over three two-dimensional arrays (i.e., A, B, 

and C). Intuitively, we would like each thread in the 

GPU kernel to compute a single value in the output array. 

To do this we map the two outer loop iterators (i1 and i2) 

to a two-dimensional thread configuration. We have two 

choices to consider here: 

� Mapping α: map i1 to the lower dimension of the 

thread configuration (labeled tx throughout this 

paper) and i2 to the higher dimension of the thread 

configuration (labeled ty throughout this paper), or 

� Mapping β: map i1 to ty and i2 to tx. 

These two mapped kernels are shown in Listing 2 and 

Listing 3 respectively. 

 

  for( i1=0; i1< M; i1++) 

for( i2=0; i2< N; i2++) 

for( i3=0; i3< P; i3++) 

C[i1 ][ i2 ] += A[i1][i3]*B[i3 ][ i2 ]; 

Listing 1. Serial matrix multiplication. 

 

 int tx = get global id (0); 

int ty = get global id (1); 

for( i3=0; i3<P; i3++) 

C[tx ][ ty ] += A[tx][i3]*B[i3 ][ ty ]; 

Listing 2. Thread mapping α (i1 maps to tx and i2 maps to ty). 

 

int tx = get global id (0); 

int ty = get global id (1); 

for( i3=0; i3<P; i3++) 

C[ty ][ tx ] += A[ty][i3]*B[i3 ][ tx ]; 

Listing 3. Thread mapping β(i1 maps to ty and i2 maps to tx). 

 

As Listing 2 and 3 show, the thread mapping changes 

the memory access pattern (e.g., C[tx][ty] in mapping α, 

versus C[ty][tx] in mapping β) and this can have a huge 

impact on overall performance. Fig. 1 compares the 

performance of the two mappings on an NVIDIA GT200 

architecture (GeForce GTX 285) for a range of input 

sizes; we see that performance differs by an order of 

magnitude. We will show how this performance sensitive 

thread mapping is represented in our model in Section 

III-A and III-B and how the model is used to derive 

optimized thread mappings in Section V. 

 

3. Impact of Work Group Size on Performance 

 

To enable scaling of the number of compute units 

while maintaining same level of hardware utilization, 

GPUs impose the requirement that compute units are 

autonomous execution units (i.e., no direct 

communication is possible between compute units). Each 

compute unit has the same amount of local hardware 

resources on which only threads (or work groups) 

assigned to it can operate. Synonymous with compute 

units, the programming model divides threads into 

independent groups (called work groups in OpenCL), 

each of which is identical in the number of threads and 

resource usage, so as a problem scales in size, additional 

work groups are created, but no other changes to the 

algorithm are required. These two concepts, work groups 

and compute units, are the enablers of scalability in GPU 

computing on the software side and hardware side, 

respectively. 

Optimization challenges arise due to the fact that per-

compute-unit hardware resources determine the number 

 

Fig. 1. Impact of thread mapping on performance on a NVIDIA 

GT200 GPU. 
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of work groups and threads that can run simultaneously. 

Programmers need to carefully consider the work group 

size while factoring in these hardware resources to 

maximize hardware utilization. 

To understand the impact of work group size on 

performance, we modified the NVIDIA SDK version of 

the matrix multiplication kernel that utilizes local 

memory to be able to test a range of work group size 

dimensions [13]. Fig. 2 illustrates the performance of 

each work group configuration. The performance of the 

kernel when the work group size is 512 (32 (ty) × 16 (tx), 

upper-left corner in the graph) is approximately 5.9× 

better than when it is 32 (2 (ty) × 16 (tx), bottom-left 

corner). Even given the same work group size, 512 for 

example, the performance differs by 2.6× between two 

different configuration (32  (ty) × 16 (tx), upper-left 

corner and (2 (ty) × 256 (tx), bottom-right corner). 

Finding a good work group size is not intuitive, and is 

very complex when programming with local memory. 

Static constraints such as the maximum number of active 

threads and work groups allowed on a single compute 

unit, and the maximum number of threads per work 

group must be considered along with the register usage 

per thread and the local memory usage per work group. 

Changing the size or dimensions of a work group may 

end up resulting in very different performance. In this 

work, we attempt to assist the programmer by suggesting 

a thread mapping and work group size that best utilizes 

the underlying hardware by means of static memory 

access pattern analysis. In Section V, we present an 

algorithm that recommends sizes and dimensions that are 

likely to perform well for a given work group. 

III. STATIC MEMORY ACCESS PATTERN 

ANALYSIS 

In Section II-B, we showed how critical it is to choose 

a proper mapping of data to thread structure and to 

choose proper work group sizes. Before we present our 

extension to the previous model which fully incorporates 

thread mapping, we briefly recap the basic mathematical 

model presented in [3] that captures memory access 

patterns in a serial data-parallel loop nest. We then 

present our extensions in following subsections. 

Consider a data-parallel loop nest of depth D that 

accesses an M-dimensional array. The memory access 

pattern of the array can be represented as a memory 

access vector, m
υρ
, which is a column vector of size M 

that describes how each dimension of the array is 

accessed. For example, in Listing 1, array A is a two-

dimensional array where the first dimension is traversed 

by i1 and the second dimension is traversed by i3; the 

corresponding memory access vector is: 

 

 
1

3
A

i
m

i

 
=  
 

υρ
  

 

Although the concept is simple for a trivial example, 

significant insight can be gained in the general case by 

decomposing the memory access vector to its affine 

form: 

 

 Am Mi o= +
ρρ ρ

  

 

where M is a memory access matrix whose size is M × D, 

i
ρ
is an iteration vector of size D iterating from the 

outermost to innermost loop, and o
ρ
 is a column vector 

of size M that denotes the starting offset in each 

dimension of the array. Note that we only consider loops 

with array accesses that can be represented as affine 

functions of loop indices and symbolic variables (e.g., 

height, width, etc.). We have found that this restriction 

does not limit us since most scientific applications 

involve loops possessing affine access patterns [14]. The 

memory access patterns of the serial matrix 

multiplication loop nest shown in Listing 1 are captured 

as follows. A more detailed explanation of how these 

memory access patterns are captured is available in [3]. 

 

Fig. 2. A map view of the execution times of matrix 

multiplication comparing different work group size 

configurations (the shade of gray indicates the execution time, 

darker is shorter). 
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i
i

m i
i

i

 
      = = +             

ρ
  

 

Although our model is based on a simple affine form 

commonly found in other well-known loop optimization 

models, our proposed analysis model is simpler yet 

powerful enough to explain all important memory access 

behaviors present on GPUs which other models are not 

capable of. Existing models such as the polyhedral [7, 8], 

distance/direction vector and unimodular [15, 16] are 

developed to improve locality and minimize synchroni-

zation cost targeting single or multicore processors. In 

contrast, our analysis model is developed under 

consideration of massively multithreaded data-parallel 

GPUs where global data communication is not of 

primary interest and a batch of threads access memory 

simultaneously. Our model also incorporates two-level 

thread hierarchy, SIMT execution model, and multiple 

memory spaces with distinct access preference. 

 

1. Incorporating Thread Mapping 

 

In our representation, thread mapping simply replaces 

iteration indices with thread indices. We use tx, ty, and tz 

to denote the thread dimensions, starting from the lowest 

dimension. For example, the memory access patterns for 

arrays A, B, and C after thread mapping α (Listing 2) and 

β (Listing 3) are shown below (parentheses are used to 

denote thread mapping β). 

 

 

( )
( ) 1 0 0 0

( )
3 0 0 1 0

3

A

tx ty
tx ty

m ty tx
i

i

 
      = = +             

ρ
  

 

( )
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( )
( ) 0 1 0 0

3

B

tx ty
i

m ty tx
ty tx

i

 
      = = +             

ρ
  

 

( )
( ) 1 0 0 0

( )
( ) 0 1 0 0

3

C

tx ty
tx ty

m ty tx
ty tx

i

 
      = = +             

ρ
  

 

Our thread mapping classifies memory access patterns 

into inter-thread and intra-thread patterns. The inter-

thread memory access patterns tell us how thread 

dimensions are mapped to array dimensions. We collect 

this information by extracting the columns of the 

memory access matrix that are accessed by thread indices. 

For example, the inter-thread memory access patterns 

associated with arrays A, B, C in the matrix 

multiplication example shown above are composed of the 

first two columns of their respective memory access 

matrices, respectively: 

 

 
1 0 ( ) 0 0 ( )

, ,
0 0 ( ) 0 1 ( )

tx ty tx ty

ty tx ty tx

       
       
       

  

 
1 0 ( )

0 1 ( )

tx ty
and

ty tx

   
   
   

  

 

In thread mapping α the “1” in the upper left corner of 

the inter-thread memory access matrix for array A 

indicates that the highest dimension of the array (the first 

row) is accessed by threads in the lowest dimension of 

the thread map. In other words, the first column of the 

memory access matrix corresponds to tx when 

performing the matrix multiplication. In thread mapping 

β, the same “1” indicates that the highest dimension of 

the array is accessed by threads in the highest dimension 

of the thread map, ty. 

The intra-thread memory access patterns are the 

columns of the memory access matrix that correspond to 

iteration indices that are not mapped to threads. In the 

matrix multiplication example, the intra-thread access 

patterns are represented by the third column of each 

memory access matrix: 

 

 [ ] [ ] [ ]
0 1 0

3 , 3 , 3
1 0 0

i i and i
     
     
     

  

 

for matrices A, B, and C, respectively. These patterns 

indicate how the threads that are mapped by the inter-

thread memory access pattern actually access the data. 

For example, the lowest dimension of array A 
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(represented in the second row of its memory access 

matrix), is accessed by i3, meaning that consecutive data 

elements will be access by each thread. Matrix B, on the 

other hand, is accessed by i3 in it’s highest dimension, so 

individual threads will access elements that are a stride 

apart. Finally, array C does not use i3 as an iterator, so 

the data that Matrix C is accessing will not change within 

the third loop. Later we will show how the inter-thread 

and intra-thread memory access patterns can be used to 

optimize memory accesses on the GPU. 

 

2. Extended Pattern Characterization 

 

In our earlier work [3], we classified memory access 

patterns into a number of categories: linear, reverse 

linear, shifted, overlapping, non-unit stride, and random 

patterns using our mathematical representation. In this 

section we extend our analysis to capture more exact 

memory access patterns and show that they are in fact 

necessary for proper memory space selection, thread 

mapping, and work group sizing. 

In order to explain how thread mapping impacts the 

performance of memory accesses, we extend each of our 

memory access pattern classifications to include true and 

false sub-patterns. For example, the linear pattern is 

divided into true linear and false linear patterns, 

depending on which thread dimension accesses each 

dimension of the array. 

The true linear pattern refers to accesses where threads 

with consecutive thread IDs access contiguous and 

increasing memory addresses. These patterns are 

represented by a “1” in the last row of the column 

corresponding to tx in the inter-thread memory access 

matrix (or a “-1” in the reverse linear case). Intra-thread 

memory access patterns do not play a role in this 

classification. 

The false linear pattern is similar to the true linear 

pattern except that consecutive memory addresses are 

accessed by threads with non-consecutive threads IDs. 

These patterns are represented by “1” or “-1” in any row 

aside from the last row of the column that corresponds to 

tx in the inter-thread memory access matrix. 

All other patterns are similarly subdivided into true 

and false patterns. Fig. 3 shows a graphical view of the 

true and false linear patterns, along with their 

representations in our model. 

3. Coalesced Memory Accesses 

 

When threads of a thread batch execute a memory 

instruction, the GPU hardware attempts to convert these 

separate accesses into one or a few coalesced accesses 

whenever possible—the exact number of accesses 

required depends on the size of data type and the access 

pattern. Note that the extent to which GPUs can coalesce 

memory accesses, and hide the penalty for non-linear 

accesses, is highly dependent on the underlying hardware. 

In our memory access pattern analysis model, a true 

linear pattern and a true reverse linear pattern are 

considered as fully coalesced memory accesses. Note 

that all other patterns could result in various types of 

coalesced access patterns, but we consider them as 

uncoalesced patterns for simplicity in this work. 

 

4. Accesses to Same Memory Address 

 

Identifying when different threads read from the same 

memory address is crucial for the utilization of constant 

memory. Using our model, we can recognize when threads 

will read from the same address based on two 

requirements: 1) there are no inter-thread memory access 

patterns (there are all zeros in the inter-thread entries of the 

memory access matrix), and 2) there exists an intra-thread 

memory access pattern (at least one non-zero element), 

where the non-zero element does not correspond to a loop 

variable of the input problem size. If the loop variable 

value is a function of the problem size, then the array 

could potentially be a candidate for data prefetching. 

 

5. Data Prefetch 

 

Data prefetch is a key mechanism for removing memory 

   

           (a) True linear            (b) False Linear 

Fig. 3. Linear patterns and their representation in our model (W

denotes the width of a work group). 
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bottlenecks and needs to be used effectively if we want to 

achieve peak performance on GPUs. Prefetching can be 

implemented by using local memory after loop strip 

mining is performed3. Efficient use of local memory can 

significantly boost performance [4, 9, 12]. 

In our representation, the potential benefits of data 

prefetch can be explored by characterizing any intra-

thread memory access patterns present. If we detect an 

intra-thread pattern, this is typically due to loops that are 

not explicitly mapped to threads (e.g., loop bodies that 

remain inside a kernel body, even after thread mapping is 

performed). There are potential benefits to prefetching 

this data to local memory and then access those elements 

locally. In this work we only consider linear intra-thread 

patterns as candidates for prefetch, since other patterns 

tend to be less deterministic and make it difficult to 

predict the potential benefits of prefetching. Note that 

there is no benefit from prefetching data to local memory 

in a kernel that does not have an intra-thread access 

pattern (e.g., vector addition kernel). 

IV. ALGORITHMIC MEMORY SPACE 

SELECTION  

Having described the characteristics of each memory 

space in section II-A and our representation of static 

memory access patterns and analysis in section III, we 

present a detailed algorithm to identify the best memory 

space to place an array. 

Our proposed algorithm (see the algorithm 1) takes as 

input the memory access pattern, the size of the array, the 

read-write information of each array instance, and a 

thread index vector and outputs the memory space 

selected for the array. While scanning input information, 

the algorithm first considers the read-write characteristics 

for the array (line 4). If there are any writes to the array, 

constant memory will not be selected. If the array has 

only read accesses, then we first check whether the 

memory access pattern is suitable for constant memory: 

the size of the array must be small enough to fit in the 

available constant memory and all threads must read the 

same address (line 4). Next the algorithm checks if the 

memory access pattern meets the requirements for using 

                                            
3 Loop strip mining is a technique to split a single loop into a nested loop. 

The resulting inner loop iterates over a strip of the original loop - the 

number of iterations of the inner loop is known as the strip length. 

local memory (line 7): and potential for using data 

prefetch. Finally the algorithm checks whether the 

memory access pattern is coalesced (line 24), and if so, 

then global memory is selected. Otherwise texture 

memory is selected. A similar procedure is applied to 

read-write and write-only data, skipping any 

requirements checking for constant memory. 

Note that after running the algorithm, multiple 

memory spaces may be selected for a single array due to 

different memory access patterns for each array instance. 

If this is the case, then we make a final selection using 

the following priorities: for read-only data 1) texture, 2) 

global, 3) local, 4) constant memory, for read-write data 

1) global, 2) local, and for write-only data 1) texture, 2) 

global, 3) local memory. 

 

Algorithm 1:Memory selection 

input : M and o
�

 pairs of all instances of an array 

(SMA), the size, read-write, and a thread index 

vector ( t
�

) 

output: Memory space (MS) 

1  MS ←0 ; 

2 if read-only then 

3 for each M ∈ SMA do 
4 if Small && Same address read then 

5  MS ← MS + Constant; 

6 end 

7 else if Data preftech then 

8  MS ← MS + Local; 

9 end 

10 else if Coalesced then 

11  MS ← MS + Global; 

12 end 

13 

 

else MS ← MS + Texture; 

14 

 

end 

15 end 

16 else 

17 for each M ∈ SMA do 
18 if Data prefetch then 

19  MS ← MS + Local; 

20 end 

21 else if Uncoalesced && Write-only then 

22  MS ← MS + Texture; 

23 end 

24 else  

25 

 

 MS ← MS + Global; 

26 

 

 end 

27  end 

28 end 
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V. ALGORITHMICALLY SELECTING THREAD 

MAPPINGS AND WORK GROUP SIZES 

As shown in Section II, thread mappings and work 

group sizes can have an enormous impact on the 

performance of GPU programs. On NVIDIA GPUs, 

uncoalesced memory accesses are the biggest detriment 

to memory bandwidth, and choosing thread mappings 

that are inappropriate for the memory access patterns of a 

kernel will significantly degrade performance. 

Alternatively, selecting proper thread mappings and 

appropriately sized work groups can allow for very 

efficient use of local memory to prefetch and cache data, 

alleviating a large amount of memory pressure. Our 

methodology uses the estimated number of uncoalesced 

memory accesses, and the estimated amount of data that 

can be stored in local memory as our cost and gain, 

respectively, to evaluate the efficiency of combinations 

of thread mappings and work group sizes. 

 

1. Cost and Gain Calculation 

 

Our cost and gain calculation is performed on a per-

work-group basis, since all work groups have the same 

memory access behavior and hardware resource usage. 

Our proposed cost estimation is computed as follows. 

Fully coalesced memory patterns (i.e., true linear or true 

reverse linear) have no cost. False linear and false 

reverse linear patterns, on the other hand, have a cost of 

either “H”, “W”, “D”, or the product of a combination of 

these, where “H”, “W”, “D” are the height, width, and 

depth of the work group. The values that are chosen for 

the cost depend on the mapping of thread dimensions to 

array access dimensions. For example, in the case of the 

mapping α of the matrix multiplication kernel, array A 

exhibits a false linear pattern because adjacent threads 

are accessing different rows of the array. Since the “1” in 

the inter-thread pattern corresponds to tx, and tx is the 

width of the work group, the cost becomes “W” in this 

case. The cost of array B is zero because tx is not 

involved and we assume that higher dimensions (ty in 

this case) of the thread map are always a multiple of a 

half warp size. The cost for the array C is “H*W” due to 

the false linear pattern present in both tx and ty. 

Therefore, when the work group size is 8 (ty) × 32 (tx) 

the cost associated with arrays A, B, and C are 32 (tx), 0, 

and 8 (ty) × 32 (tx), respectively. Fig. 4 shows a 

graphical view of our cost calculation for the two 

mappings of the matrix multiplication kernel. 

The estimated gain is based on the number of elements 

in local memory, while taking loop strip mining into 

account. Note that data prefetching always entails loop 

strip mining. The strip length cannot exceed the size of 

the smallest dimension of thread map; otherwise we 

could not specify the entire size of the prefetched data 

simultaneously using local thread IDs. The gain is 

calculated by multiplying the size of smaller dimensions 

and size of the strip length. For example, for the α 

mapping matrix multiplication kernel, when the work 

group size is 8 (ty) × 32 (tx) the local memory accesses 

for array A and B are 32 (tx) × 8 (strip length) and 8 (ty) 

× 8 (strip length), respectively and the gains become 8 

(smaller of 32 and 8) × 8 (strip length) and 8 (smaller of 

8 and 8) × 8 (strip length). Choosing the smaller 

dimension takes into account the fact that selecting a 

smaller strip dictates a higher inner loop trip count. The 

final cost and gain are the total of the individual costs 

and gains for each array. 

 

2. Resource Constraints and Search Space 

 

There are two per-compute-unit hardware resources to 

consider when searching for a good work group size: 

 

Fig. 4. Cost in the two thread mapping schemes for matrix 

multiplication kernel when the size of work group is 32(tx) 

×8(ty): X indicates uncoalesced memory accesses and SL 

denotes the loop strip length. 
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registers and local memory. Registers are a hardware 

resource that is shared among all active threads on a 

single compute unit (directly related to the number of 

active threads). Local memory is shared by active work 

groups (directly related to the number of active work 

groups). The following two equations show how the two 

hardware resources are related to each other in terms of 

work group size. 

 

 
# # # #Registers Threads WG Registers

Thread WG CU CU
× × <    (1) 

 
# # #Local Memory WG Local Memory

Work Group CU CU
× <    (2) 

 
Eq. (1) implies that given a particular register pressure 

ratio (denoted as #Registers / Thread in the equation) 

computed on a per-kernel-body basis, the number of 

active work groups (denoted as #WG / CU) must 

decrease as the work group size (denoted as #Threads / 

WG) increases. Eq. (2) indicates that if the number of 

active work groups decreases, the amount of local 

memory that each work group can use (denoted as 

#Local Memory / WG) increases. When a kernel does not 

use local memory, Eq. (2) can be ignored. When multi-

dimensional thread mapping is involved, there are a 

number of choices for different combinations for 

selecting the dimension sizes of a work group. In this 

case, we search for all possible choices where the lowest 

dimension size (tx) is multiple of a half warp size (the 

key unit for memory accesses). For example, the work 

group size of 256 in a two-dimensional thread mapping 

has 2 (ty) × 128 (tx), 4 (ty) × 64 (tx), 8 (ty) × 32 (tx), and 

16 (ty) × 16 (tx) as possible combinations. 

 

3. Our Proposed Methodology 

 

Hardware vendors usually provide ideal work group 

sizes for their GPUs [9, 12, 17, 18]4. Since hardware 

resources almost always constrain the work group size, our 

proposed search space starts from the largest ideal size and 

progresses down toward the minimum acceptable size 

until we find enough good candidates (specified by the 

programmer). For NVIDIA GPUs, the ideal work group 

size is not the maximum possible number of active threads 

                                            
4 The ideal work group size can be different across GPU architectures. 

NVIDIA recommends that GPUs with compute capability 1.3 (e.g., GTX 

285) should have between 256 and 512 threads per work group. 

per compute unit, as creating multiple work groups will 

allow for better hardware utilization. 

Our methodology to search for a thread mapping and 

work group size is summarized in Algorithm 2. Given 

the memory space selections provided by Algorithm 1, 

we start with the ideal work group size that allows for at 

least two work groups to be active per compute unit after 

accounting for register pressure (Eq. (1) is used). From 

there, we decrease the work group size using predefined 

ordered sets of work group configurations, calculating 

the cost and gain of each configuration. Finally, the 

selection of candidates that produce optimized thread 

mappings and work group sizes is based on the following 

priority. When local memory is used, (i.e., there exists 

positive gain), we use 1) high gain, 2) low cost, 3) large 

work group size, otherwise we use, 1) low cost, 2) high 

occupancy, 3) high number of active work groups. Note 

that when data is prefetched into local memory, the 

number of device memory accesses tends to decrease 

significantly, implying that the associated cost is reduced. 

Note also that if local memory is not used, the work 

group size does not play any role. 

 

Algorithm 2: Searching for beneficial thread mappings and 

work group sizes. 

input : Memory access patterns and memory space 

selections for arrays, a thread index vector, the 

number of registers used, the desired number of 

candidates for good work group sizes (C)  

output : Candidates for a good thread mapping and work 

group size 

1 Compute the largest starting work group size from the 

predefined work group configuration table (WGT) that 

allows at least 2 active work groups; 

2 while WGT is not empty do 

3 

 

4 

 

5 

Compute the number of active work groups (AWG) 

based on the register count; 

Compute the amount of local memory required 

(ALM); 

if ALM ≤  local memory size then 

6 

7 

 

Compute the cost and gain; 

Push it into the priority queue (PQ) based on our 

priority; 

8 end 

9 

 

Get the next smaller work group size configuration 

from WGT; 

10 end 

11 Output the first C number of elements from PQ; 
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Consider the mapping β in the matrix multiplication 

kernel. According to Algorithm 1, arrays A and B 

possess access patterns that can benefit from data 

prefetching using local memory, and the output array C 

does not, so it is placed in global memory. The search 

begins with the largest ideal work group size, 512. Since 

the register pressure allows for 2 active work groups on a 

single compute unit, it is a valid starting size. Because 

the algorithm uses a two-dimensional thread mapping, 

we search all predefined configurations of a two-

dimensional work group (attempt #1 through #12 in 

Table 1). Note that the lowest dimension (tx) is a 

multiple of the warp size. For each work group 

configuration containing the same total number of 

threads, we compute the cost and gain and store it in a 

priority queue data structure. The algorithm continues 

this process until it visits all entries of the predefined 

work group size configuration table. Finally, the 

algorithm outputs the specified number of elements 

(denoted as C in the algorithm) in the priority queue. 

Table 1 summarizes the work group search process along 

with metrics, our rank, and actual measured performance 

in the order of search. 

VI. EXPERIMENTAL RESULTS 

We evaluate our proposed methodology using four 

different algorithms: two common numerical kernels and 

two complex real world kernels. These four benchmarks 

contain a wide range of memory access patterns, thread 

configurations, and resource requirements. For 

comparison purposes, two different versions of the 

algorithm were implemented for each benchmark: one 

using only the default (global) memory for each array, 

and the other using the memory spaces selected by 

Algorithm 1. For the latter implementation, we use our 

framework to generate suggested thread mappings and 

work group sizes, and we compare the performance of 

our suggested configurations against actual execution 

times. 

The experiments were conducted on an NVIDIA 

Geforce GTX 285 GPU using the OpenCL programming 

language and the CUDA 4.2 Toolkit and SDK (graphic 

device driver 295.41). The host system is configured 

with a 2.66 GHz Intel Core 2 Duo running 64-bit Linux, 

with 2 GB of main memory.  

The first kernel evaluated is vector addition. This is a 

very simple kernel, and is usually the first kernel that a 

programmer learns for GPU programming. In vector 

addition, there is a single loop that iterates over three 

one-dimensional arrays, and each array exhibits the same 

access pattern: a true linear inter-thread pattern and no 

intra-thread pattern. Since the kernel has only one loop, 

the only possible thread mapping is to a one-dimensional 

thread configuration. The number of registers required 

per thread is 3. 

According to Algorithm 1, global memory is selected 

for all arrays. Since the number of registers used does not 

restrict the recommended work group size, we start with 

the largest work group size that hardware vendor 

recommends (512). For any configuration, the cost and 

the gain are always zero since all memory access patterns 

are coalesced and no local memory is utilized. Algorithm 

2 repeats the cost and gain calculations on the ordered, 

predefined set of work group sizes and pushes each result 

into the priority queue. The work group configurations 

that remain at the frontend of the priority queue become 

the candidates for selection. Table 2 summarizes the 

experimental results. We see that our ranking of work 

group sizes closely aligns with the actual measured 

performance. 

The second benchmark kernel is matrix-vector 

multiplication. This kernel has a two-level nested loop 

that iterates over arrays that differ in their number of 

Table 1. An example of algorithmic thread mapping and work 

group size search: matrix multiplication, †ty×tx (total number of 

threads), * measured execution time in milliseconds when input 

matrix size is 1024×1024. Costs are all zeros. WGS=Work 

Group Size, AWG=the number of Active Work Groups, 

OR=Our Rank 

# WGS† AWG GAIN OR MET* 

1 2×256 (512) 2 2×2 + 2×2 (8) 9 29.31 

2 4×128 (512) 2 4×4 + 4×4 (32) 6 21.49 

3 8×64 (512) 2 8×8 + 8×8 (128) 3 15.58 

4 16×32 (512) 2 16×16 + 16×16 (512) 1 12.73 

5 32×16 (512) 2 16×16 + 16×16 (512) 1 11.30 

6 2×128 (256) 4 2×2 + 2×2 (8) 10 28.16 

7 4×64 (256) 4 4×4 + 4×4 (32) 7 20.77 

8 8×32 (256) 4 8×8 + 8×8 (128) 4 15.35 

9 16×16 (256) 4 16×16 + 16×16 (512) 2 11.19 

10 2×64 (128) 8 2×2 + 2×2 (8) 11 26.15 

11 4×32 (128) 8 4×4 + 4×4 (32) 8 19.70 

12 8×16 (128) 8 8×8 + 8×8 (128) 5 14.77 
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dimensions. There are two one-dimensional arrays and 

one two-dimensional array. Again, there is only one 

choice for thread mapping: the memory access pattern of 

the one-dimensional output (write-only) array is 

[ ]1 0
2

tx

i

 
 
 

 and it exhibits a true linear inter-thread 

pattern with no intra-thread access. The memory access 

pattern of the one-dimensional input (read-only) array is 

[ ]0 1
2

tx

i

 
 
 

 and possesses no inter-thread accesses and is 

a true linear intra-thread pattern. Finally, the memory 

access pattern of the two-dimensional input (read-only) 

array is captured as 
1 0

0 1 2

tx

i

   
   
   

 and exhibits a false 

linear inter-thread pattern and a true linear intra-thread 

pattern. Given the memory access patterns, algorithm 1 

selects global memory for the first array. The second and 

third arrays exhibit the potential of benefiting from data 

prefetching, so for the second array texture memory is 

selected with prefetching to local memory, and for the 

third array global memory is selected, with prefetching to 

local memory. 

In this kernel, the amount of local memory used is a 

major limiting factor that influences the work group size. 

Due to the local memory usage, the first valid work 

group size we can consider is 32. Table 3 summarizes the 

search process, and includes the cost and gain, measured 

execution time, and resulting speedup when compared to 

using only global memory. 

The next kernel studied is a real world application that 

computes radiological paths—the most computationally 

expensive step in medical image reconstruction [19]. The 

particular algorithm is called the improved Siddon 

algorithm [20] and is the most widely used in its domain. 

The algorithm computes the contribution of the various 

parts of the body to the radiation received by a number of 

X-ray detector cells. For each radiological path from the 

radiation source to a detector cell, the local intensities of 

object cells (i.e., cells in the body) that the rays hit are 

integrated along the path. Given the number of detector 

cells and the radiation emission, radiological paths are 

calculated more than a million times. The kernel involves 

four arrays: one three-dimensional read-only array, one 

two-dimensional write-only array, and two one-

dimensional read-only arrays. Given that we decide to 

map this loop to a two-dimensional thread configuration, 

there are two potential mappings. Here we show only the 

better of the mappings, which has the following memory 

access patterns (the order of the arrays is the same as the 

order when they were listed above). 

 

 

0 0 0
1 0 0

0 0 0 , ,
0 1 0

0 0 3 3

tx tx

ty ty

Z i i

     
      
                 

  

 [ ] [ ]1 0 0 , 0 1 0

3 3

tx tx

ty ty

i i

   
   
   
      

  

 

Following the order shown above, memory access 

patterns are classified as: no inter-thread and random 

intra-thread pattern, true linear inter-thread and no intra-

thread pattern, true linear inter-thread and no intra-thread 

pattern, and true linear inter-thread and no intra-thread 

pattern. Given these pattern classifications, our memory 

selection algorithm selects texture memory for the first 

array and global memory for the rest of the arrays. The 

algorithm then searches to find good candidates for thread 

mapping and work group size, as shown in Table 4. 

The final example is also taken from a real world 

application called Speeded Up Robust Features (SURF) 

[21]. The SURF algorithm is used to detect features in 

images for applications like stabilization and panorama 

stitching. The particular kernel we tested is called non-

Table 2. Experimental results of vector addition when the input 

size is 225 and the register count is 3. Acronyms and units are 

the same as in Table 1 

# WGS AWG Cost Gain OC OR MET 

1 512 2 0 0 100% 3 3.39 

2 256 4 0 0 100% 2 3.38 

3 128 8 0 0 100% 1 3.39 

4 64 8 0 0 50% 4 3.60 

5 32 8 0 0 25% 5 5.89 

6 16 8 0 0 25% 5 11.61 

 

 

Table 3. Experimental results of matrix-vector multiplication 

when each dimension of the input arrays are 4096 and the 

register count is 17. † Speedup over default global memory 

space. SU = Speedup, Other acronyms and units are the same as 

in Table 1 

# WGS AWG Cost Gain OR MET SU† 

1 32 4 32 32×32+32 (1056) 1 3.25 6.57 

2 16 4 16 16×16+16 (272) 2 3.95 6.87 
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max suppression (NMS), which plays a critical role in the 

SURF algorithm. The kernel looks for the largest value 

in a stack of images which have been subjected to 

convolutions with different filters. The kernel involves 

four arrays: three two-dimensional read-only arrays 

which possess the same memory access pattern, and one 

two-dimensional write-only array. We map this loop to a 

two-dimensional thread configuration and again only 

show the better of the two possible mapping choices. The 

memory access patterns are as follows. 

 

 
0 0 1 0 0

,
0 0 0 1 0

3 3

tx tx
Z

ty ty
Z

i i

   
      
               

  

 

The patterns are classified as no inter-thread and 

random intra-thread pattern, and true linear inter-thread 

and no intra-thread pattern, respectively. Texture 

memory is selected for the first three arrays and global 

memory is selected for the last array. The results of the 

work group size search are summarized in Table 5. 

VII. LIMITATIONS OF OUR APPROACH AND 

FUTURE WORK 

Our analysis models and optimization techniques are 

best employed when considering memory-intensive 

kernels (i.e., where the ratio of ALU to memory 

operations is low). In general, when arithmetic intensity 

is high, the GPU hardware can perform efficient memory 

latency hiding. If hardware can hide most memory 

latencies, then memory optimizations will have a limited 

performance impact. Although this is a limitation, in 

reality the majority of GPGPU kernels are memory-

bound. 

Similarly, since our cost metrics do not assign weights 

to different arrays based on their potential contribution to 

overall memory contention, our approach may not find 

the best possible result as the number of memory access 

patterns and associated arrays in a kernel increase. For 

most kernels, however, our methodology has been shown 

to work very well, and our simple, highly automated 

algorithms accurately represent the complex interplay 

between GPU hardware and software. 

Presently, our framework only handles standard uses 

of the memory spaces. Programmers frequently utilize 

memory spaces differently. A good example is local 

memory. Instead of using local memory for data 

prefetching, it can be used to avoid uncoalesced accesses. 

Texture memory can be effectively used to exploit 

hardware-based interpolation and filtering present in 

selected application domains.  

We made several assumptions and simplifications in 

this work as well. Our thread mapping assumes that the 

problem size is a multiple of a half warp. Real-world 

applications are unlikely to always meet this requirement, 

so techniques such as data padding are required to apply 

Table 5. Experimental result of NMS algorithm when input 

image size is 256 × 256. The register count is 15. † Speedup 

over default global memory space. Cost and Gain are all zeros. 

Acronyms and units are the same as in Table 1 

# WGS AWG OC OR MET SU† 

1 2×256 (512) 2 100% 3 16.8 5.11 

2 4×128 (512) 2 100% 3 16.8 5.12 

3 8×64 (512) 2 100% 3 16.8 5.12 

4 16×32 (512) 2 100% 3 16.8 5.13 

5 32×16 (512) 2 100% 3 16.9 5.12 

6 2×128 (256) 4 100% 2 16.8 5.13 

7 4×64 (256) 4 100% 2 16.8 5.12 

8 8×32 (256) 4 100% 2 16.8 5.12 

9 16×16 (256) 4 100% 2 16.9 5.11 

10 2×64 (128) 8 100% 1 16.8 5.11 

11 4×32 (128) 8 100% 1 16.8 5.12 

12 8×16 (128) 8 100% 1 16.9 5.13 

13 2×32 (64) 8 50% 4 16.9 5.12 

14 4×16 (64) 8 50% 4 16.9 5.13 

15 2×16 (32) 8 25% 5 17.1 5.08 

 

Table 4. Experimental results for the radiological path 

calculation using an input image size of 256 × 32. The register 

count is 28. † Speedup over default global memory space. Cost 

and Gain are all zeros. Acronyms and units are the same as in 

Table 1 

# WGS AWG OC OR MET SU† 

1 2×128 (256) 2 50% 3 176.90 1.61 

2 4×64 (256) 2 50% 3 176.50 1.61 

3 8×32 (256) 2 50% 3 174.17 1.60 

4 16×16 (256) 2 50% 3 164.92 1.62 

5 2×64 (128) 4 50% 2 169.85 1.58 

6 4×32 (128) 4 50% 2 170.16 1.58 

7 8×16 (128) 4 50% 2 164.75 1.63 

8 2×32 (64) 8 50% 1 166.09 1.59 

9 4×16 (64) 8 50% 1 163.01 1.63 

10 2×16 (32) 8 25% 4 162.35 1.63 
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our methodology. We also assume that the register size 

per thread of a kernel is fixed and therefore it always has 

priority to determine the work group size over local 

memory. However, the programmer can perform explicit 

actions to reduce the number of registers if a certain 

number of active threads are desired. The programmer 

can also give priority to local memory usage to increase 

performance. Another assumption made is that the data 

we are working with is naturally-aligned (e.g., int or 

float). Though this assumption is true in most common 

cases, our methodology would require some 

modifications to work for unaligned data. 

Finally, our analysis model is device dependent. 

Should the characteristics of memory spaces change, our 

analysis needs to be updated accordingly. For example, 

latest commercial GPUs have an on-chip cache for global 

memory, so the sensitivity of performance to 

uncoalesced memory accesses should be reduced 

substantially. In this case our cost metrics need updating. 

VIII. CONCLUSION 

Current programming languages such as OpenCL and 

CUDA have made it easier for programmers to accelerate 

their code on GPU devices, though to reap the full 

performance benefits offered by these devices is still 

heavily dependent on a programmer’s ability to fine tune 

their code to the underlying hardware—this is where the 

steep learning curve of GPU programming actually exists. 

Tools or frameworks that guide the programmer or 

automatically select optimizations can have a huge 

impact on the wider adoption of GPUs. 

Memory continues to be a key bottleneck in many 

GPU applications. Selecting and applying the right set of 

memory optimizations is a daunting programming task. 

We have focused our work on characterizing memory 

access patterns, and developed tools and algorithms to 

address this important challenge. In this paper we have 

shown how thread mapping and work group size impacts 

memory access patterns and thus performance. We have 

presented our model for memory access pattern analysis 

that also considers how to select an appropriate thread 

mapping and work group size. 

Although our methodology is used to assist a 

programmer in developing highly optimized code, the 

idea can also be used to develop an automatic source-to-

source parallelizing compiler, or can be implemented as 

an optimization pass during compilation. 
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