• 제목/요약/키워드: GP (glycoprotein)

검색결과 129건 처리시간 0.027초

Reversal of Multidrug Resistance in Mouse Lymphoma Cells by Extracts and Flavonoids from Pistacia integerrima

  • Rauf, Abdur;Uddin, Ghias;Raza, Muslim;Ahmad, Bashir;Jehan, Noor;Siddiqui, Bina S;Molnar, Joseph;Csonka, Akos;Szabo, Diana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권1호
    • /
    • pp.51-55
    • /
    • 2016
  • Phytochemical investigation of Pistacia integerrima has highlighted isolation of two known compounds naringenin (1) and dihydrokaempferol (2). A crude extract and these isolated compounds were here evaluated for their effects on reversion of multidrug resistance (MDR) mediated by P-glycoprotein (P-gp). The multidrug resistance P-glycoprotein is a target for chemotherapeutic drugs from cancer cells. In the present study rhodamine-123 exclusion screening test on human mdr1 gene transfected mouse gene transfected L5178 and L5178Y mouse T-cell lymphoma cells showed excellent MDR reversing effects in a dose dependent manner. In-silico molecular docking investigations demonstrated a common binding site for Rhodamine123, and compounds naringenin and dihydrokaempferol. Our results showed that the relative docking energies estimated by docking softwares were in satisfactory correlation with the experimental activities. Preliminary interaction profile of P-gp docked complexes were also analysed in order to understand the nature of binding modes of these compounds. Our computational investigation suggested that the compounds interactions with the hydrophobic pocket of P-gp are mainly related to the inhibitory activity. Moreover this study s a platform for the discovery of novel natural compounds from herbal origin, as inhibitor molecules against the P-glycoprotein for the treatment of cancer.

Virus-cell fusion inhibitory compounds from Ailanthus altissima Swingle

  • Lee, Hyang-Hee;Chang, Young-Su;Moon, Young-Hee;Woo, Eun-Rhan
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.264.1-264.1
    • /
    • 2003
  • In order to search for the anti-HIV agents from natural products, Eighty MeOH extracts of medicinal plants were applied to a syncytia formation inhibition assay which is based on the interaction between the HIV-1 envelope glycoprotein gp120/gp41 and the cellular membrane protein CD4 of T lymphocytes. Among them, Ailanthus altissima showed a potent virus-cell fusion inhibitory activity. (omitted)

  • PDF

고려인삼의 Cytochrome P450 및 P-Glycoprotein 매개 약물 상호작용에 미치는 영향 (A Systematic Review on Potential Drug Interactions of Korean Ginseng Based upon Cytochrome P450 and P-Glycoprotein)

  • 남기열;양병욱;신왕수;박종대
    • 생약학회지
    • /
    • 제49권2호
    • /
    • pp.85-102
    • /
    • 2018
  • A drug interaction is a situation in which a substance affects the activity of a drug, synergistically or antagonistically, when both are administered together. It has been shown that orally taken ginsenosides are deglycosylated by intestinal bacteria to give ginsenosides metabolites, which has been considered to be genuine pharmacological constituents and to exhibit drug interactions. Animal experimental results demonstrated that ginsenoside metabolites play an important role in the inhibitory or inductive action of both CYPs (cytochrome p450) and P-gp (p-glycoprotein), thereby can be applied as metabolic modulator to drug interactions. Very few are known on the possibility of drug interaction if taken the recommended dose of ginseng, but it has been found to act as CYPs inductor and P-gp inhibitor in any clinical trial, suggesting the risk that side effects will occur. It has been recently reported that interactions might also exist between ginseng and drugs such as warfarin, phenelzine, imatinib and raltegravir. Moreover, medicinal plants are increasingly being taken in a manner more often associated with prescription medicines. Therefore, considering the extensive applications of ginseng for safety, the aim of this review is to present a comprehensive overview of ginseng and drug interactions based upon pharmacodynamic and pharmacokinetic evidences.

Screening for Chemosensitizers from Natural Plant Extracts through the Inhibition Mechanism of P-glycoprotein

  • Ahn, Hee-Jeong;Song, Im-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권5호
    • /
    • pp.269-275
    • /
    • 2010
  • P-gp plays a critical role in drug disposition and represents a mechanism for the development of multidrug resistance. Flavonoids, a major class of natural compounds widely present in foods and herbal products, have been shown to inhibit P-gp. Therefore, the aim of this study was to identify new candidate chemosensitizers by screening various plant extracts. The ability of natural plant extracts to inhibit P-gp activity was assessed by measuring cellular accumulation of calcein AM, daunorubicin and vincristine in P-gp overexpressing MDCKII-MDR1 cells. Among more than 800 plant extracts, eight were found to inhibit P-gp activity. Curcuma aromatica extract produced greatest inhibition, followed by Curcuma longa and Dalbergia odorifera extracts. Extracts of Aloe ferox, Curcuma zedoariae rhizome, Zanthoxylum planispinum, and Ageratum conyzoides showed moderate inhibitory effects. Curcumin and quercetin exhibited similar inhibition of P-gpmediated efflux of daunorubicin and vincristine, and flavones had a lesser effect. When chemosensitizing effect was evaluated by measuring daunorubicin sensitivity to MDCKII-MDR1 cells in the presence of natural plant extracts, Curcuma aromatica showed the most potent chemosensitizing effect based on daunorubicin cytotoxicity. In conclusion, natural plant extracts such as Curcuma aromatica can potently inhibit P-gp activity and may have potential as a novel chemosensitizers.

Effects of Curcumin on the Pharmacokinetics of Loratadine in Rats: Possible Role of CYP3A4 and P-glycoprotein Inhibition by Curcumin

  • Li, Cheng;Choi, Byung-Chul;Kim, Dong-Ki;Choi, Jun-Shik
    • Biomolecules & Therapeutics
    • /
    • 제19권3호
    • /
    • pp.364-370
    • /
    • 2011
  • The purpose of this study was to investigate the effects of curcumin on the pharmacokinetics of loratadine in rats. The effect of curcumin on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4 activity was evaluated. Pharmacokinetic parameters of loratadine were also determined after oral and intravenous administration in the presence or absence of curcumin. Curcumin inhibited CYP3A4 activity with an IC50 value of 2.71 ${\mu}M$ and the relative cellular uptake of rhodamine-123 was comparable. Compared to the oral control group, curcumin significantly increased the area under the plasma concentration-time curve and the peak plasma concentration by 39.4-66.7% and 34.2-61.5%. Curcumin also significantly increased the absolute bioavailability of loratadine by 40.0-66.1% compared to the oral control group. Consequently, the relative bioavailability of loratadine was increased by 1.39- to 1.67-fold. In contrast, curcumin had no effect on any pharmacokinetic parameters of loratadine given intravenously, implying that the enhanced oral bioavailability may be mainly due to increased intestinal absorption caused via P-gp and CYP3A4 inhibition by curcumin rather than to reduced renal and hepatic elimination of loratadine. Curcumin enhanced the oral bioavailability of loratadine in this study. The enhanced bioavailability of loratadine might be mainly attributed to enhanced absorption in the gastrointestinal tract via the inhibition of P-gp and reduced fi rst-pass metabolism of loratadine via the inhibition of the CYP3A subfamily in the small intestine and/or in the liver by curcumin.

Analysis of the Potent Platelet Glycoprotein IIb-IIIa Antagonist from Natural Sources

  • Kang, In-Cheol;Kim, Doo-Sik
    • BMB Reports
    • /
    • 제31권5호
    • /
    • pp.515-518
    • /
    • 1998
  • Adhesive interaction of the platelet glycoprotien IIb-IIIa (GP IIb-IIIa) with a plasma protein, such as fibrinogen, plays an important role in thrombosis and hemostasis. The specific sequence Arg-Gly-Asp (RGD) is critical for the binding of fibrinogen to platelet. To examine and characterize the GP IIb-IIIa antagonist from natural sources, we have developed a simple enzyme-linked immunosorbant assay (ELISA) system. The GP IIb-IIIa complex was purified to homogeneity from platelet Iysates by the combination of two affinity chromatographic methods using the synthetic RGD peptide (GRGDSPK)-immobilized Sepharose and wheat germ lectin-Sepharose. The synthetic peptide GRGDSP inhibits GP IIb-IIIa binding to immobilized fibrinogen with an $IC_{50}$ of $1.5\;{\mu}M$. Venoms of three different snake species and a Korean scolopendra extract have strong antagonistic activities for the binding of human fibrinogen to the platelet GP IIb-IIIa complex. The $IC_{50}$ values of the snake venom s and scolopendra were in the range of $5.5\;{\mu}g$ to $60\;{\mu}g$. These results provide meaningful information for developing antiplatelet agents.

  • PDF

Characterization of Binding Mode of the Heterobiaryl gp120 Inhibitor in HIV-1 Entry: A Molecular Docking and Dynamics Simulation Study

  • Gadhe, Changdev G.;Kothandan, Gugan;Cho, Seung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2466-2472
    • /
    • 2013
  • Human immunodeficiency virus type-1 (HIV-1) is a causative agent of Acquired immunodeficiency syndrome (AIDS), which has affected a large population of the world. Viral envelope glycoprotein (gp120) is an intrinsic protein for HIV-1 to enter into human host cells. Molecular docking guided molecular dynamics (MD) simulation was performed to explore the interaction mechanism of heterobiaryl derivative with gp120. MD simulation result of inhibitor-gp120 complex demonstrated stability. Our MD simulation results are consistent with most of the previous mutational and modeling studies. Inhibitor has an interaction with the CD4 binding region. Van der Waals interaction between inhibitor and Val255, Thr257, Asn425, Met426 and Trp427 were important. This preliminary MD model could be useful in exploiting heterobiaryl-gp120 interaction in greater detail, and will likely to shed lights for further utilization in the development of more potent inhibitors.

흰쥐에서 아피제닌이 타목시펜의 생체이용률에 미치는 영향 (Effects of Apigenin, a Flavonoid, on the Bioavailability of Tamoxifen in Rats)

  • 김양우;최준식
    • 약학회지
    • /
    • 제54권5호
    • /
    • pp.370-376
    • /
    • 2010
  • The aim of this study is to investigate the effect of apigenin on the pharmacokinetics of tamoxifen in rats. Tamoxifen was administered orally (10 mg/kg) or intravenously (2 mg/kg) without or with oral administration of apigenin (0.4, 2.0 or 8.0 mg/kg) to rats. The effect of apigenin on the P-glycoprotein (P-gp) and CYP3A4 activity was also evaluated. Apigenin inhibited CYP3A4 enzyme activity with 50% inhibition concentration ($IC_{50}$) of 1.8 ${\mu}M$. In addition, apigenin significantly enhanced the cellular accumulation of rhodamine 123 in MCF-7/ADR cells overexpressing P-gp. The plasma concentrations of tamoxifen were increased significantly by apigenin compared to control. The areas under the plasma concentration-time curve (AUC) and the peak concentrations ($IC_{max}$) of tamoxifen with apigenin were significantly higher than those of the control group. Consequently, the relative bioavailability (RB%) of tamoxifen with apigenin was 2-3-fold higher than the control, and absolute bioavailability (AB%) of tamoxifen were significantly higher (p<0.05 with co-administration, p<0.01 with pretreatment) than those of the control. The increased bioavailability of tamoxifen in rats with apigenin might be associated with the inhibition of an efflux pump P-glycoprotein and CYP3A4 by apigenin. From these results, dosage regimen of tamoxifen may be need to adjust when concomitantly administered with apigenin.

Flavonoids: An Emerging Lead in the P-glycoprotein Inhibition

  • Gadhe, Changdev G.;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제5권2호
    • /
    • pp.72-78
    • /
    • 2012
  • Multidrug resistance is a major obstacle in cancer chemotherapy. Cancer cells efflux chemotherapeutic drug out of cell by means of transporter and reduce the active concentration of it inside cell. Such transporters are member of the ATP binding cassettes (ABC) protein. It includes P-gp, multiple resistant protein (MRP), and breast cancer resistant protein (BCRP). These proteins are widely distributed in the human cells such as kidney, lung, endothelial cells of blood brain barrier etc. However, there are number of drugs developed for it, but most of them are getting transported by it. So, still there is necessity of a good modulator, which could effectively combat the transport of chemotherapeutic agents. Natural products origin modulators were found to be effective against transporter such as flavonoids, which belongs to third generation modulators. They have advantage over synthetic inhibitor in the sense that they have simple structure and abundant in nature. This review focuses on the P-gp structure its architecture, efflux mechanism, herbal inhibitors and their mechanism of action.