• 제목/요약/키워드: GP (glycoprotein)

검색결과 129건 처리시간 0.021초

PCI시술시 혈소판 당단백 GP IIb/IIIA 억제제(Abciximab) 투여의 경제적 가치 (Economic Value of Platelet Glycoprotein IIb/IIIA Receptor Blocker (Abciximab) for Percutaneous Coronary Intervention)

  • 김진현;신상진;김은주;이영희
    • 약학회지
    • /
    • 제51권3호
    • /
    • pp.186-193
    • /
    • 2007
  • This study was performed to analyse the economic value of abciximab which is used in PCI to prevent high-risk patients with ischemic complications. The effectiveness of abciximab was extracted from published clinical trials by search-ing CCIS, and the direct medical costs relevant to using abciximab were estimated from the NHI claims database. The results in terms of cost per life-year gained (LYG) and cost per QALY gained showed that abciximab was cost-effective enough to deserve its cost. Social net benefit resulting from abciximab in PCI was estimated to be 60-70 billion Won per year.

Isolation and Structure Elucidation, Molecular Docking Studies of Screlotiumol from Soil Borne Fungi Screlotium rolfsii and their Reversal of Multidrug Resistance in Mouse Lymphoma Cells

  • Ahmad, Bashir;Rizwan, Muhammad;Rauf, Abdur;Raza, Muslim;Azam, Sadiq;Bashir, Shumaila;Molnar, Joseph;Csonka, Akos;Szabo, Diana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.2083-2087
    • /
    • 2016
  • A new compound namely (13-(3,3-dihydroxypropyl)-1,6-dihydroxy-3,4-dihydro-1H-isochromen-8(5H)-one (1) was isolated from an ethyl acetate extract of the borne fungi Screlotium rolfsii. Its chemical structure was elucidated by spectroscopic analysis. Screlotiumol 1 were evaluated for their effects on the reversion of multidrug resistant (MDR) mediated by P-glycoprotein (P-gp) of the soil borne fungi. The multidrug resistant P-glycoprotein is a target for chemotherapeutic drugs in cancer cells. In the present study rhodamine-123 exclusion screening test on human mdr1 gene transfected mouse gene transfected L5178 and L5178Y mouse T-cell lymphoma which showed excellent MDR reversing effect in a dose dependent manner against mouse T-lymphoma cell line. Moreover, molecular docking studies of compound-1 also showed better results as compared with the standard. Therefore the preliminary results obtained from this study suggest that screlotiumol 1 could be used as a potential agent for the treatment of cancer.

Molecular Prevalence and Genotypes of Cryptosporidium parvum and Giardia duodenalis in Patients with Acute Diarrhea in Korea, 2013-2016

  • Ma, Da-Won;Lee, Myoung-Ro;Hong, Sung-Hee;Cho, Shin-Hyeong;Lee, Sang-Eun
    • Parasites, Hosts and Diseases
    • /
    • 제57권5호
    • /
    • pp.531-536
    • /
    • 2019
  • Cryptosporidium parvum and Giardia duodenalis are the main diarrhea-causing parasitic pathogens; however, their prevalence in Korea is unknown. Here, we conducted a survey to determine the prevalence and genotype distribution of these 2 pathogens causing acute diarrhea in 8,571 patients hospitalized in 17 Regional Institute of Health Environment sites in Korea, during 2013-2016. C. parvum and G. duodenalis were detected and genotyped by nested PCR, and the isolate were molecularly characterized by sequencing the glycoprotein 60 (Gp60) and ${\beta}-giardin$ genes, respectively. The overall prevalence of C. parvum and G. duodenalis was 0.37% (n=32) and 0.55% (n=47), respectively, and both pathogens were more prevalent in children under 9 years old. Molecular epidemiological analysis showed that the C. parvum isolates belonged to the IIa family and were subtyped as IIaA13G2R1, IIaA14G2R1, IIaA15G2R1, and IIaA18G3R1. Analysis of the ${\beta}-giardin$ gene fragment from G. duodenalis showed that all positive strains belong to assemblage A. This is the first report on the molecular epidemiology and subtyping of C. parvum and G. duodenalis in such a large number of diarrheal patients in Korea. These results highlight the need for continuous monitoring of these zoonotic pathogens and provide a basis for implementing control and prevention strategies. Further, the results might be useful for epidemiological investigation of the source of outbreak.

섬자리공 유래 항바이러스 단백질과 항체 복합체를 이용한 HIV-1 감염세포의 선택적 제거 (Human Immunodeficiency Virus-Infected T Cells Are Selectively Killed by Monoclonal Anti-gp120 Antibody Coupled to Pokeweed Antiviral Protein)

  • 강미란;김윤구;홍효정;조명환;신형식;김선영
    • 대한바이러스학회지
    • /
    • 제28권4호
    • /
    • pp.383-391
    • /
    • 1998
  • A murine monoclonal antibody (mAb) specific for the envelope glycoprotein gp120 of human immunodeficiency virus type-I (HIV -1) was chemically coupled to pokeweed antiviral protein (PAP) from Phytolacca americana. The immunotoxin was purified by FPLC using S200 colum. The purified immunotoxin efficiently bound to HIV-infected T cells as evidenced by fluorescenceactivated cell sorter analysis. The immunotoxin selectively killed human T lymphoid lines infected with $HIV-1_{IIIB}$ at less than 250 pM of the immunotoxin cells, while PAP or mAb alone did not have any significant effect on infected cells. The uninfected control T cell lines were not affected. Human cells infected with HIV-2 or other HIV-1 strains were not killed, suggesting that the killing depends completely on the antibody used for coupling. These in vitro results suggest that the PAP-mAb conjugate may be used to selectively remove cells expressing viral antigens from individuals infected with HIV.

  • PDF

Defining the N-Linked Glycosylation Site of Hantaan Virus Envelope Glycoproteins Essential for Cell Fusion

  • Zheng, Feng;Ma, Lixian;Shao, Lihua;Wang, Gang;Chen, Fengzhe;Zhang, Ying;Yang, Song
    • Journal of Microbiology
    • /
    • 제45권1호
    • /
    • pp.41-47
    • /
    • 2007
  • The Hantaan virus (HTNV) is an enveloped virus that is capable of inducing low pH-dependent cell fusion. We molecularly cloned the viral glycoprotein (GP) and nucleocapsid (NP) cDNA of HTNV and expressed them in Vero E6 cells under the control of a CMV promoter. The viral gene expression was assessed using an indirect immunofluorescence assay and immunoprecipitation. The transfected Vero E6 cells expressing GPs, but not those expressing NP, fused and formed a syncytium following exposure to a low pH. Monoclonal antibodies (MAbs) against envelope GPs inhibited cell fusion, whereas MAbs against NP did not. We also investigated the N-linked glycosylation of HTNV GPs and its role in cell fusion. The envelope GPs of HTNV are modified by N-linked glycosylation at five sites: four sites on G1 (N134, N235, N347, and N399) and one site on G2 (N928). Site-directed mutagenesis was used to construct eight GP gene mutants, including five single N-glycosylation site mutants and three double-site mutants, which were then expressed in Vero E6 cells. The oligosaccharide chain on residue N928 of G2 was found to be crucial for cell fusion after exposure to a low pH. These results suggest that G2 is likely to be the fusion protein of HTNV.

Effects of Hydrocortisone on the Pharmacokinetics of Loratadine after Oral and Intravenous Loratadine Administration to Rats

  • Choi, Jun-Shik;Choi, In;Burm, Jin-Pil
    • Biomolecules & Therapeutics
    • /
    • 제17권2호
    • /
    • pp.205-210
    • /
    • 2009
  • The present study investigated the effects of hydrocortisone on the pharmacokinetics of loratadine in rats after intravenous and oral administration. A single dose of loratadine was administered either orally (4 mg/kg) or intravenously (1 mg/kg) with or without oral hydrocortisone (0.3 or 1.0 mg/kg). Compared to the control group (without hydrocortisone), after oral administration of loratadine, the area under the plasma concentration-time curve (AUC) was significantly increased by 30.2-81.7% in the presence of hydrocortisone (p<0.05). The peak plasma concentration ($C_{max}$) was significantly increased by 68.4% in the presence of 1.0 mg/kg hydrocortisone after oral administration of loratadine (p<0.05). Hydrocortisone (1.0 mg/kg) significantly increased the terminal plasma half-life ($t_{1/2}$) of loratadine by 20.8% (p<0.05). Consequently, the relative bioavailability of loratadine was increased by 1.30- to 1.82-fold. In contrast, oral hydrocortisone had no effects on any pharmacokinetic parameters of loratadine given intravenously. This suggests that hydrocortisone may improve the oral bioavailability of loratadine by reducing first-pass metabolism of loratadine, most likely mediated by P-gp and/or CYP3A4 in the intestine and/or liver. In conclusion, hydrocortisone significantly enhanced the bioavailability of orally administered loratadine in rats, which may have been due to inhibition of both CYP 3A4-mediated metabolism and P-gp in the intestine and/or liver by the presence of hydrocortisone.

yoxoplusmg leondii의 세포막 단백 성분과 그 항원성 (Membrane Proteins and Their Antigenicity of Toxoplasma gondii)

  • 최원영;남호우;유재을
    • Parasites, Hosts and Diseases
    • /
    • 제26권3호
    • /
    • pp.155-162
    • /
    • 1988
  • Toxoplasmn gondii이 강독주인 RH주와 조직내 cyst 형성주인 Fukaya주의 세포막 단배 성분을 SDS 존재하에 서 전기영동하여 분석하였다. 먼저 RH tachyzoite와 Fukaya의 cyst를 각각 마우스의 복강액과 뇌조직으로부터 분리하였는데, 불연속 Percoll density-gradient서 원심분리하여 tachygoite는 50 U와 605 Percoll용액 경계면에서, cyst는 40%와 50%의 경계면 및 50%와 60 % 경계면에서 얻었으며, cyst는 저장액으로 처리하여 bradyzoite를 얻었다. Lactoperoxidase를 촉매로 세포막에 방사성 요오드를 표지시킨 후 자가방사표지그림을 얻었을 때, bradyzoite 는 15 KDa와 14 KDa의 분자량을 가진 단백질이 주요 단백질로 나타났으며, tachyzoite에서는 30 KDa 단백질이 주요 단백질로 나타났다. 또, 당단백질의 존재를 파악하기 위해서 lectin blotting을 시행하였는데, concanavalin A는 bradyzoite에서 200K∼50KDa의 여러 단백질을, .그리고 tachyzoite에서는 52KDa 단백질을 주로 하는 33K∼20 KDa단백질을 검출하였으며, phytohemagglutinin은 두·유형에서 아무런 단백질도 검출하지 못하였다. 한편, 이들을 효소면역이적법으로 항 Fukfya항체와 항 RH항체로 반응시켰을 때, 많은 교차 반응을 보였으나, bradyzoite에서는 15 KDa 단백질이, 그리고 tachyzoite에서는 52 KDa, 30 KDa 및 25 KDa 단백 짙이 각각 유형 특이 항원 단백으로 나타났다. 위의 결과들로, bradyzoite에서는 15 KDa 단백질이 당단백질은 아니지만 특이 항원성을 갖는 주요 백으로 나타났으며, tachyzoite에서는 지금까지 주요 세포막 단백으로. 알려진 P3O외에 당단백질이며 성을 갖는 세포막 단백으로 SaKDa 단백 (gps2)을 확인할 수 있었다.

  • PDF

MDR1 C3435T and C1236T Polymorphisms: Association with High-risk Childhood Acute Lymphoblastic Leukemia

  • Pongstaporn, Wanida;Pakakasama, Samart;Chaksangchaichote, Panee;Pongtheerat, Tanett;Hongeng, Suradej;Permitr, Songsak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2839-2843
    • /
    • 2015
  • Background: MDR1, one of the most important drug-transporter genes, encodes P- glycoprotein (P-gp)-a transporter involved in protecting against xenobiotics and multi-drug resistance. The significance of the genetic background in childhood acute lymphoblastic leukemia (ALL) is not well understood. Materials and Methods: To evaluate whether C3435T and C1236T MDR1 polymorphisms are associated with the occurrence and outcome of ALL, 208 children with ALL (median age 5.0 yr) and 101 healthy Thai children were studied by polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) assay. Results: C3435T and C1236T MDR1 polymorphism are significantly associated with the high-risk group (OR= 2.6, 95%CI =1.164-5.808; P=0.028 and OR= 2.231, 95%CI =1.068-4.659; p=0.047, respectively), indicating that both may be candidates for molecular markers in the high-risk group of ALL.

Knockdown of MDR1 Increases the Sensitivity to Adriamycin in Drug Resistant Gastric Cancer Cells

  • Zhu, Chun-Yu;Lv, Yan-Ping;Yan, Deng-Feng;Gao, Fu-Lian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6757-6760
    • /
    • 2013
  • Gastric cancer is one of the most frequently occurring malignancies in the world. Development of multiple drug resistance (MDR) to chemotherapy is known as the major cause of treatment failure for gastric cancer. Multiple drug resistance 1/P-glycoprotein (MDR1/p-gp) contributes to drug resistance via ATP-dependent drug efflux pumps and is overexpressed in many solid tumors including gastric cancer. To investigate the role of MDR1 knockdown on drug resistance reversal, we knocked down MDR1 expression using shRNA in drug resistant gastric cancer cells and examined the consequences with regard to adriamycin (ADR) accumulation and drug-sensitivity. Two shRNAs efficiently inhibited mRNA and protein expression of MDR1 in SGC7901-MDR1 cells. MDR1 knockdown obviously decreased the ADR accumulation in cells and increased the sensitivity to ADR treatment. Together, our results revealed a crucial role of MDR1 in drug resistance and confirmed that MDR1 knockdown could reverse this phenotype in gastric cancer cells.

Buccal Transport of Paclitaxel using Ethanol and Glyceryl Monooleate

  • Lee, Yoon-Jin;Kang, Myung-Joo;Park, Young-Mi;Choi, Young-Wook;Lee, Jae-Hwi
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권5호
    • /
    • pp.311-314
    • /
    • 2007
  • Paclitaxel (PTX) is an antineoplastic agent approved for the treatment of ovarian and breast carcinomas. However, the use of paclitaxel as an anticancer drug is limited by its extremely poor water solubility (below $0.3\;{\mu}g/mL$). Furthermore, it has very low bioavailability when administered orally because paclitaxel is a substrate of P-glycoprotein (P-gp) efflux pump. In this study, buccal delivery of PTX was investigated as one of the alternatives for PTX delivery. Ethanol and glyceryl monooleate (GMO) were selected as permeation enhancing agents to increase solubility and permeation across buccal mucosa of PTX. At the different concentrations of ethanol solution ($30{\sim}70\;w/w\;%$), PTX permeation was studied, followed effects of GMO in the concentration range of $2.5{\sim}25%$ with ethanol vesicle. The transbuccal ability of PTX was evaluated in vitro using Franz diffusion cells mounted with rabbit buccal mucosa. As a result, incorporation of PTX into ethanol vesicle with GMO significantly enhanced the PTX permeation in rabbit buccal mucosa. Particularly, the mixtures of ethanol:water:GMO at the ratio of 50:47.5:2.5 showed the most excellent enhancing ability. The results showed a promising possibility for buccal delivery of PTX.