• Title/Summary/Keyword: GOCI data

Search Result 135, Processing Time 0.029 seconds

LRIT DESIGN OF COMS

  • KOO In-Hoi;PARK Durk-Jong;SEO Seok-Bae;AHN Sang-Il;KIM Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.305-308
    • /
    • 2005
  • The COMS, Korea's first geostationary multipurpose satellite program will accommodate 3 kind of payloads; Ka-Band communication transponder, GOCI (Geostationary Ocean Color Imager), and MI (Meteorological Imager). MI raw data will be transferred to ground station via L-band link. The ground station will perform image data processing for raw data, generate them into the LRIT/HRIT format, the user dissemination data recommended by the CGMS. The LRIT/HRIT are disseminated via satellite to user stations. This paper shows the COMS LRIT data generation procedure based on COMS LRIT specification and its verification results using the LRIT user station.

  • PDF

Study on the Correlation Between the Upwelling Cold Waters and Cochlodinium polykrikoides Red Tide in the Southeast Sea of Korea (한국 남동해역의 냉수대 발생 변화와 Cochlodinium polykrikoides 적조와의 상관성 연구)

  • Kim, Bum-Kyu;Hwang, Do-Hyun;Bak, Su-Ho;Kim, Heung-Min;Unuzaya, Enkhjargal;Kim, Dae-Hyun;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.559-572
    • /
    • 2019
  • In the southeast sea of Korea, the cold water is concentrated in every summer, showing in abnormal oceanic conditions. Cold water occurred in the southeast sea is dominantly influenced by wind, which occurs when the south wind is continuously blowing for 3 to 7 days more. In this study, water temperature, wind speed and direction data of KMA, KHOA and KHNP, Chlorophyll-a of COMS/GOCI, GHRSST Level 4 SST of NASA, and red tide alert data of the National Institute of Fisheries Science were used to analyze the correlation between occurrence and change of the cold water and the red tide of Cochlodinium polykrikoides. The upwelling cold water mass showed a characteristic of moving northward along the current and occurrence a high concentration of chlorophyll along the water mass. Also, when the warm current were strong, the characteristic of red tide showed a northward moving.

An Analysis of the Relationship between Inherent Optical Properties and Ocean Color Algorithms Around the Korean Waters (한반도 주변의 해수 고유광특성과 해색 알고리즘의 관계 분석)

  • Min, Jee-Eun;Ryu, Joo-Hyung;Park, Young-Je
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.473-490
    • /
    • 2015
  • There are diverse sea areas within the coverage of GOCI which is observed around the Korea at one-hour intervals. It includes not only very clear ocean of East Sea, but also extremely turbid waters of the Yangtze River estuary. In this study, we analyzed the different optical characteristics of various sea areas using absorption coefficients of phytoplankton, Suspended Particulate Matter(SPM), Dissolved Organic Matter(DOM). Totally 959 sets of bio-optical and marine environmental data were obtained from 2009 to 2014 around the sea area of Korea. The East Sea, South Sea, East China Sea and offshore part of Yellow Sea showed similar pattern having high levels of contribution of phytoplankton and DOM. On the other hands, the coastal part of Mokpo and Gyeonggi Bay showed opposite pattern having high levels of contribution of SPM and DOM. As a result of the algorithm performance for chlorophyll-a(Chl-a) and SPM, Chl-a is mostly overestimated and SPM is mainly tended to be underestimated. Large amount of errors are induced by the SPM rather than the chl-a and DOM. These errors are primarily founded in the coastal waters having relatively high levels of $a_{SPM}$ contribution of more than 60%.

COMS METEOROLOGICAL IMAGER SPACE LOOK SIDE SELECTION ALGORITHM

  • Park, Bong-Kyu;Lee, Sang-Cherl;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.100-103
    • /
    • 2008
  • COMS(Communication, Ocean and Meteorological Satellite) has multiple payloads; Meteorological Image(MI), Ocean Color Imager(GOCI) and Ka-band communication payloads. MI has 4 IR and 1 visible channel. In order to improve the quality of IR image, two calibration sources are used; black body image and cold space look data. In case of COMS, the space look is performed at 10.4 degree away from the nadir in east/west direction. During space look, SUN or moon intrusions are strictly forbidden, because it would degrade the quality of collected IR channel calibration data. Therefore we shall pay attention to select space look side depending on SUN and moon location. This paper proposes and discusses a simple and complete space look side selection logic based on SUN and moon intrusion event file. Computer simulation has been performed to analyze the performance of the proposed algorithm in term of east/west angular distance between space look position and hazardous intrusion sources; SUN and moon.

  • PDF

Backup Site Operation Of COMS Image Data Acquisition And Control System (천리안위성 영상 수신 및 처리에 대한 백업 지상국 운영)

  • Cho, Young-Min;Kwon, Eun Joo
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • The backup site operation of the Image Data Acquisition and Control System (IDACS) for Communication Ocean Meteorological Satellite (COMS) is discussed in terms of the ground station configuration, image data processing, and the characteristics of backup activities for both the meteorological image data and the ocean image data. The well-performed backup operation of the COMS IDACS is also confirmed with the first three years normal operation results from April, 2011 to March, 2014. The operation results are analyzed through statistical approach to provide the achieved operational performance of the image data reception, preprocessing, and broadcast.

Development of relative radiometric calibration system for in-situ measurement spectroradiometers (현장관측용 분광 광도계의 상대 검교정 시스템 개발)

  • Oh, Eunsong;Ahn, Ki-Beom;Kang, Hyukmo;Cho, Seong-Ick;Park, Young-Je
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.455-464
    • /
    • 2014
  • After launching the Geostationary Ocean Color Imager (GOCI) on June 2010, field campaigns were performed routinely around Korean peninsula to collect in-situ data for calibration and validation. Key measurements in the campaigns are radiometric ones with field radiometers such as Analytical Spectral Devices FieldSpec3 or TriOS RAMSES. The field radiometers must be regularly calibrated. We, in the paper, introduce the optical laboratory built in KOSC and the relative calibration method for in-situ measurement spectroradiometer. The laboratory is equipped with a 20-inch integrating sphere (USS-2000S, LabSphere) in 98% uniformity, a reference spectrometer (MCPD9800, Photal) covering wavelengths from 360 nm to 1100 nm with 1.6 nm spectral resolution, and an optical table ($3600{\times}1500{\times}800mm^3$) having a flatness of ${\pm}0.1mm$. Under constant temperature and humidity maintainance in the room, the reference spectrometer and the in-situ measurement instrument are checked with the same light source in the same distance. From the test of FieldSpec3, we figured out a slight difference among in-situ instruments in blue band range, and also confirmed the sensor spectral performance was changed about 4.41% during 1 year. These results show that the regular calibrations are needed to maintain the field measurement accuracy and thus GOCI data reliability.

Simulation Approach for the Tracing the Marine Pollution Using Multi-Remote Sensing Data (다중 원격탐사 자료를 활용한 해양 오염 추적 모의 실험 방안에 대한 연구)

  • Kim, Keunyong;Kim, Euihyun;Choi, Jun Myoung;Shin, Jisun;Kim, Wonkook;Lee, Kwang-Jae;Son, Young Baek;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.249-261
    • /
    • 2020
  • Coastal monitoring using multiple platforms/sensors is a very important tools for accurately understanding the changes in offshore marine environment and disaster with high temporal and spatial resolutions. However, integrated observation studies using multiple platforms and sensors are insufficient, and none of them have been evaluated for efficiency and limitation of convergence. In this study, we aimed to suggest an integrated observation method with multi-remote sensing platform and sensors, and to diagnose the utility and limitation. Integrated in situ surveys were conducted using Rhodamine WT fluorescent dye to simulate various marine disasters. In September 2019, the distribution and movement of RWT dye patches were detected using satellite (Kompsat-2/3/3A, Landsat-8 OLI, Sentinel-3 OLCI and GOCI), unmanned aircraft (Mavic 2 pro and Inspire 2), and manned aircraft platforms after injecting fluorescent dye into the waters of the South Sea-Yeosu Sea. The initial patch size of the RWT dye was 2,600 ㎡ and spread to 62,000 ㎡ about 138 minutes later. The RWT patches gradually moved southwestward from the point where they were first released,similar to the pattern of tidal current flowing southwest as the tides gradually decreased. Unmanned Aerial Vehicles (UAVs) image showed highest resolution in terms of spatial and time resolution, but the coverage area was the narrowest. In the case of satellite images, the coverage area was wide, but there were some limitations compared to other platforms in terms of operability due to the long cycle of revisiting. For Sentinel-3 OLCI and GOCI, the spectral resolution and signal-to-noise ratio (SNR) were the highest, but small fluorescent dye detection was limited in terms of spatial resolution. In the case of hyperspectral sensor mounted on manned aircraft, the spectral resolution was the highest, but this was also somewhat limited in terms of operability. From this simulation approach, multi-platform integrated observation was able to confirm that time,space and spectral resolution could be significantly improved. In the future, if this study results are linked to coastal numerical models, it will be possible to predict the transport and diffusion of contaminants, and it is expected that it can contribute to improving model accuracy by using them as input and verification data of the numerical models.

Enhanced Primary Production in Response to Freshwater Inflow in the Nakdong River Estuary: Characteristics of land-Ocean Coupling (LOC) (낙동강 하구에서 담수 유입에 따른 연안 클로로필-a 증가 : 낙동강의 육상-해양 coupling 패턴 분석)

  • KIM, SUHYUN;AN, SOONMO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.96-109
    • /
    • 2021
  • Since terrestrial input plays a major role in coastal primary production, an understanding of land-ocean coupling (LOC) is key to understand coastal ecological changes. In this study, the LOC has been classified into three stages (i.e., the baseflow, plume event and residual flow). In order to characterize its pattern in Nakdong River estuary, multi-platform data were obtained from remote sensing (geostationary ocean color image (GOCI)), in-situ measurement (marine environment information system (MEIS)), on-site measurement (discharge data and meteorological data). The MEIS data were grouped into three stages of LOC using principal component analysis (PCA), and the LOC (2013 ~ 2018) was examined at each stage using multi-platform data. In the Nakdong River estuary, the maximum value of chlorophyll-a (chl-a) was unexpectedly appeared during the plume event. It is assumed that there was no significant increase in turbidity, expected during the typical plume event, together with the weak flushing effect, caused the enhanced phytoplankton growth. Compared with other estuaries, LOC is common in estuaries affected by freshwater inflow, but LOC has different pattern depending on the size of the plume. While estuaries that form small plumes of about 10 km (low freshwater discharge and weak flushing effect) observed high chl-a in the plume event because the phytoplankton can response to the increased nutrient more rapidly. estuaries that form large plumes of more than 100 km est (high freshwater discharge and strong flushing effect) follow the typical LOC pattern conceptualized in this study (high chl-a in the residual flow).

Development of Seasonal Habitat Suitability Indices for the Todarodes Pacificus around South Korea Based on GOCI Data (GOCI 자료를 활용한 한국 연근해 살오징어의 계절별 서식적합지수 모델 개발)

  • Seonju Lee;Jong-Kuk Choi;Myung-Sook Park;Sang Woo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1635-1650
    • /
    • 2023
  • Under global warming, the steadily increasing sea surface temperature (SST) severely impacts marine ecosystems,such as the productivity decrease and change in marine species distribution. Recently, the catch of Todarodes Pacificus, one of South Korea's primary marine resources, has dramatically decreased. In this study, we analyze the marine environment that affects the formation of fishing grounds of Todarodes Pacificus and develop seasonal habitat suitability index (HSI) models based on various satellite data including Geostationary Ocean Color Imager (GOCI) data to continuously manage fisheries resources over Korean exclusive economic zone. About 83% of catches are found within the range of SST of 14.11-26.16℃,sea level height of 0.56-0.82 m, chlorophyll-a concentration of 0.31-1.52 mg m-3, and primary production of 580.96-1574.13 mg C m-2 day-1. The seasonal HSI models are developed using the Arithmetic Mean Model, which showed the best performance. Comparing the developed HSI value with the 2019 catch data, it is confirmed that the HSI model is valid because the fishing grounds are formed in different sea regions by season (East Sea in winter and Yellow Sea in summer) and the high HSI (> 0.6) concurrences to areas with the high catch. In addition, we identified the significant increasing trend in SST over study regions, which is highly related to the formation of fishing grounds of Todarodes Pacificus. We can expect the fishing grounds will be changed by accelerating ocean warming in the future. Continuous HSI monitoring is necessary to manage fisheries' spatial and temporal distribution.

SYSTEM DESIGN OF THE COMS

  • Lee Ho-Hyung;Choi Seong-Bong;Han Cho-Young;Chae Jong-Won;Park Bong-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.645-648
    • /
    • 2005
  • The COMS(Communication, Ocean and Meteorological Satellite), a multi-mission geo-stationary satellite, is being developed by KARl. The first mission of the COMS is the meteorological image and data gathering for weather forecast by using a five channel meteorological imager. The second mission is the oceanographic image and data gathering for marine environment monitoring around Korean Peninsula by using an eight channel Geostationary Ocean Color Imager(GOCI). The third mission is newly developed Ka-Band communication payload certification test in space by providing communication service in Korean Peninsula and Manjurian area. There were many low Earth orbit satellites for ocean monitoring. However, there has never been any geostationary satellite for ocean monitoring. The COMS is going to be the first satellite for ocean monitoring mission on the geo-stationary orbit. The meteorological image and data obtained by the COMS will be distributed to end users in Asia-Pacific area and it will contribute to the improved weather forecast.

  • PDF