• Title/Summary/Keyword: GNSS technology

Search Result 308, Processing Time 0.024 seconds

Analysis of Positioning Accuracy Using LX GNSS Network RTK (LX 위성측위 인프라기반 네트워크 RTK를 이용한 측위성능 분석)

  • Ha, Jihyun;Kim, Hyun-ho;Jung, Wan-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.507-514
    • /
    • 2015
  • The Spatial information research institute of the LX Korea land and geospatial informatix corporation manages infrastructure for the LX global navigation satellite system (GNSS), which comprises 30 monitoring stations nationwide. Since 2014, it has conducted network real-time kinematic (RTK) tests using the master-auxiliary concept (MAC). This study introduces the infrastructure of LX GNSS and presents the results of a performance analysis of the LX RTK service. The analysis was based on a total of 25 cadastral topographic control points in Jeonju, Seoul, and Incheon. For each point, performance was measured over one observation, two repeated observations, and five repeated observations. The measurements obtained from LX MAC and the VRS of the National Geographic Information Institute were compared with the announced coordinates derived from cadastral topographic control points. As a result, the two systems were found to have similar performance with average error and standard deviation differing only by 1 to 2 cm.

A Study on the Implementation and Performance Analysis of FPGA Based Galileo E1 and E5 Signal Processing (FPGA 기반의 갈릴레오 E1 및 E5 신호 처리 구현 및 성능에 관한 연구)

  • Sin, Cheon-Sig;Lee, Sang-Uk;Yoon, Dong-Weon;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.1
    • /
    • pp.36-44
    • /
    • 2009
  • The key technologies of GNSS receiver for GNSS sensor station are under development as a part of a GNSS ground station in ETRI. This paper presents the GNSS receiver implementation and signal processing result which is implemented based on FPGA to process the Galileo E1 and E5 signal. To verify the working and performance for GNSS receiver which is implemented based on FPGA, live signal received from GIOVE-B which is second test satellite is used. We gather GIOVE-B signal by using prototyping antenna and RF/IF units including IF-component. To verify Galileo E1 and E5 signal processing function from GIOVE-B, FPGA based signal processing module is implemented as a prototyping hardware board.

  • PDF

Observability Analysis of INS/GNSS System for Vehicles Moving with a Large Pitch Angle Change (피치각 변화가 큰 궤적에서의 INS/GNSS 통합항법 시스템 가관측성 분석)

  • Kim, Hyun-seok;Baek, Seung-jun;Kim, Hyung-Soo;Jo, Min-Su
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.3
    • /
    • pp.220-227
    • /
    • 2018
  • The most widely used method for constructing an inertial navigation system (INS)/global navigation satellite system (GNSS) coupling system is to construct an integrated navigation system using a Kalman filter. However, depending on the trajectory, non-observable state variables may be generated. In this case, the state variables are not estimated. To solve this problem, a integrated navigation system is constructed and then an observability analysis is performed. In this paper, a 24th order position-matched Kalman filter is defined to design an INS/GNSS integrated navigation system for vehicles moving with a large pitch angle change. To verify the appropriateness of the error state variables applied to the Kalman filter, an observability analysis was performed. The trajectory was divided into five segments, and the piece-wise constant system (PWCS) was assumed for each segment, and the results were analytically analyzed. The analytical results and the simulation results confirm that the error state parameters of the Kalman filter are well-designed to the estimation side.

Compensation Algorithm of DCO Cumulative Error in the GNSS Signal Generator (GNSS 신호생성기에서 DCO 누적오차 보상 알고리즘)

  • Kim, Taehee;Sin, Cheonsig;Kim, Jaehoon
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.119-125
    • /
    • 2014
  • In this paper, we developed the signal generator of GNSS navigation signals and analysis the performance of DCO(Digitally Clock Oscillator) compensation algorithm for cumulative distance error thorough simulation. In general, To generate a GNSS signal calculates the Doppler and Initial Pseudorange by using the location information of the receiver and the satellite. The GNSS signal generator generates a signal by determine the carrier and code output frequency using the Doppler information which is calculated as a function of time. The output frequency of the carrier and code would be used the DCO scheme. At this time, It extract the bit and code information on a for each sample by accumulating the DCO. an error of Pseudorange is generated by the cumulative error of the DCO. If Pseudorange error occurs, so that the influence to and operation of the receiver. Therefore, in this paper, we implemented the accumulated error compensation algorithm of the DCO to remove the accumulated error components DCO thereof, Pseudorange accumulated error is removed through the experiment, it was confirmed to be a high accuracy can be operated.

PPK GNSS System based UAV Photogrammetry for Construction of Urban Disaster Prevention Information (도시방재정보 구축을 위한 PPK GNSS 기반의 무인항공사진측량)

  • Park, Joon Kyu;Kim, Min Gyu
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.4
    • /
    • pp.355-362
    • /
    • 2017
  • Recently, UAV(Unmanned Aerial Vehicle) have been utilized in various fields, including surveys, mapping, and spatial analysis, depending on the increase in demand for spatial information and UAV is receiving a lot of attention due to rapid data acquisition and economic viability. In this study, the applicability of UAV image images was analyzed for urban disaster prevention. UAV images were acquired for the study area and digital surface model and ortho image were generated through data processing. Also, the process using PPK(Post Processed Kinematic) GNSS method is compared with existing method. Through the research, it was able to effectively deploy urban disaster prevention information about the target area, and displayed the effectiveness of the methods for efficient comparison with existing unmanned aerial photogrammetry. If the PPK technique is applied to thethe disaster prevention field, it is expected that the work flow in the field of rapid data acquisition and disaster prevention data construction can be greatly improved.

Accuracy Analysis of SBAS Satellite Orbit and Clock Corrections using IGS Precise Ephemeris (IGS 정밀궤도력을 이용한 SBAS 위성궤도 및 시계보정정보의 정확도 분석)

  • Jeong, Myeong-Sook;Kim, Jeong-Rae
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.178-186
    • /
    • 2009
  • SBAS(Satellite Based Augmentation System) provides GNSS satellite orbit and clock corrections for positioning accuracy improvement of GNSS users. In this paper, the accuracy of SBAS satellite orbit and clock corrections were analyzed by comparing with the IGS(International GNSS Service) precise ephemeris. The GPS antenna phase center offsets and the P1-C1 bias are considered for the analysis. The correction data of the US WAAS and the Japanese MSAS were analyzed. The analysis results showed that the SBAS satellite orbit and clock corrections are highly correlated. The correction data accuracy depends on the SBAS ground network size and orbit trajectories.

  • PDF

Development of End-to-end Numerical Simulator for Next Generation GNSS Signal Design

  • Shin, Heon;Han, Kahee;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.153-164
    • /
    • 2019
  • This paper presents the development of an end-to-end numerical simulator for signal design of the next generation global navigation satellite system (GNSS). The GNSS services are an essential element of modern human life, becoming a core part of national infra-structure. Several countries are developing or modernizing their own positioning and timing system as their demand, and South Korea is also planning to develop a Korean Positioning System (KPS) based on its own technology, with the aim of operation in 2034. The developed simulator consists of three main units such as a signal generator, a channel unit, and a receiver. The signal generator is constructed based on the actual navigation satellite payload model. For channels, a simple Gaussian channel and land mobile satellite (LMS) multipath channel environments are implemented. A software receiver approach based on a commercial GNSS receiver model is employed. Through the simulator proposed in this paper, it is possible to simulate the entire transceiver chain process from signal generation to receiver processing including channel effect. Finally, numerical simulation results for a simple example scenario is analyzed. The use of the numerical signal simulator in this paper will be ideally suited to design a new navigation signal for the upcoming KPS by reducing the research and development efforts, tremendously.

INS/GNSS/NHC Integrated Navigation System Compensating for Lever Arm Effect between NHC Effective Point and IMU Mounting Location

  • Chae, Myeong Seok;Kwon, Jae Uk;Cho, Eui Yeon;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.199-208
    • /
    • 2022
  • Inertial Navigation System (INS)/Global Navigation Satellite System (GNSS) integrated navigation system can be used for land vehicle navigation. When the GNSS signal is blocked in a dense urban area or tunnel, however, the problem of increasing the error over time is unavoidable because navigation must be performed only with the INS. In this paper, Non-Holonomic Constraints (NHC) information is utilized to solve this problem. The NHC may correct some of the errors of the INS. However, it should be noted that NHC information is not applicable to all areas within the vehicle. In other words, the lever arm effect occurs according to the distance between the Inertial Measurement Unit (IMU) mounting position and the NHC effective point, which causes the NHC condition not to be satisfied at the IMU mounting position. In this paper, an INS/GNSS/NHC integrated navigation filter is designed, and this filter has a function to compensate for the lever arm effect. Therefore, NHC information can be safely used regardless of the vehicle's driving environment. The performance of the proposed technology is verified through Monte-Carlo simulation, and the performance is confirmed through experimental test.

Performance Analysis of Spatial Adaptive Null Pattern Control Algorithm for 5 Elements Array Antenna (5소자 배열안테나의 공간 적응 널패턴 제어 알고리즘 성능분석)

  • Ahn, Seung-Gwan;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.313-319
    • /
    • 2010
  • GNSS receiver which uses the weak satellite signal is very vulnerable to the intentional jamming or non-intentional electromagnetic interference. One of the best method to overcome this disadvantage is to use an adaptive array antenna which has the capability of beamforming or nulling to the certain direction. In this paper, the performance of spatial adaptive null pattern control algorithm of 5 element array antenna is analyzed. A control algorithm which is designed in the 5 element array antenna is OPM(Output Power Minimization) which is eliminating the correlation characteristics between a reference antenna and the others. This algorithm can be applied effectively to the satellite navigation's CRPA because the satellite direction is not considered and GNSS signal power is below the thermal noise. The feature of the OPM algorithm is analyzed and the performance is compared with other null pattern control algorithm.

Performance Analysis of Zonotope Shadow Matching Algorithm According to Various Urban Environments (다양한 도심 환경에 따른 ZSM 알고리즘의 성능 분석)

  • Sanghyun Kim;Jiwon Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.215-220
    • /
    • 2024
  • In urban areas, signals can be blocked and reflected by buildings, reducing the reliability of global navigation satellite systems (GNSS). To address this, the zonotope shadow matching (ZSM) algorithm has been proposed to estimate the set-valued receiver position by calculating the GNSS shadow based on the zonotope. However, the existing study only analyzed the performance of ZSM in dense urban areas where GNSS shadows occur frequently, and the performance analysis in various urban environments was insufficient. Therefore, in this paper, we analyzed the performance of the ZSM algorithm in four urban environments with different characteristics. The results showed that the receiver position estimation performance of ZSM was relatively poor in environments where buildings were not densely populated, and the performance of ZSM was shown to be effective in urban environments with narrow roads and tall buildings.