• Title/Summary/Keyword: GNSS technology

Search Result 304, Processing Time 0.024 seconds

Study on the Applicability of GNSS Based Railway System (위성항법기반 철도 적용성 연구)

  • Jeong, Rag-Gyo;Shin, Kyoung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1707-1713
    • /
    • 2007
  • If GNSS-based location information, expected to become the mainstream of the future technology, is applied to the future transportation, it will be of benefit to as follows; cost reducing effects on operating expanse and constructing expense due to decrease of ground unit installation, development of new technologies for train, or vehicle control system and becoming a front runner in the market. Therefore, this paper provides the minimum requirements for GNSS based system thru the studies on the applicability of GNSS based system to railway system, distinctions of the new technology between the existing technologies, and location accuracy.

  • PDF

Intentional GNSS Interference Detection and Characterization Algorithm Using AGC and Adaptive IIR Notch Filter

  • Yang, Jeong Hwan;Kang, Chang Ho;Kim, Sun Young;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.491-498
    • /
    • 2012
  • A Ground Based Augmentation System (GBAS) is an enabling technology for an aircraft's precision approach based on a Global Navigation Satellite System (GNSS). However, GBAS is vulnerable to interference, so effective GNSS interference detection and mitigation methods need to be employed. In this paper, an intentional GNSS interference detection and characterization algorithm is proposed. The algorithm uses Automatic Gain Control (AGC) gain and adaptive notch filter parameters to classify types of incoming interference and to characterize them. The AGC gain and adaptive lattice IIR notch filter parameter values in GNSS receivers are examined according to interference types and power levels. Based on those data, the interference detection and characterization algorithm is developed and Monte Carlo simulations are carried out for performance analysis of the proposed method. Here, the proposed algorithm is used to detect and characterize single-tone continuous wave interference, swept continuous wave interference, and band-limited white Gaussian noise. The algorithm can be used for GNSS interference monitoring in an excessive Radio Frequency Interference environment which causes loss of receiver tracking. This interference detection and characterization algorithm will be used to enhance the interference mitigation algorithm.

Performance Analysis of Navigation Algorithm for GNSS Ground Station

  • Jeong, Seong-Kyun;Park, Han-Earl;Lee, Jae-Eun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.32-37
    • /
    • 2008
  • Global Navigation Satellite System (GNSS) is been developing in many countries. The satellite navigation system has the importance in economic and military fields. For utilizing satellite navigation system properly, the technology of GNSS Ground Station is needed. GNSS Ground Station monitors the signal of navigation satellite and analyzes navigation solution. This study deals with the navigation software for GNSS Ground Station. This paper will introduce the navigation solution algorithm for GNSS Ground Station. The navigation solution can be calculated by the code-carrier smoothing method, the Kalman-filter method, the least-square method, and the weight least square method. The performance of each navigation algorithm in this paper is presented.

  • PDF

Paradigm Shift in GNSS Education for Asia Pacific Nations

  • Hassan, Azmi;Subari, Mustafa Din
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.377-381
    • /
    • 2006
  • This paper identifies GNSS education and training program under Geomatic field of study. GNSS education programs is evaluated $vis-{\grave{a}}-vis$ new-products. Data on Geomatic knowledge generation in the era of the GNSS derivatives over the 1975 - 2003 period are examined. The emerging trends and patterns; in particular for selected Asian nations will be dissected in detail. The knowledge indicator used in this study is the patent ownership against the background of emergence of new core technologies and innovations in the field of GNSS. Looking at the dismal performance of Geomatic professionals in terms of innovative activities in most part of Asian and Malaysia in particular, is it there is something that holding up these professionals from doing so? With our universities and numerous polytechnics offering Geomatic program, more is expected from them. Is it a problem of lack or inadequacy of skills? Or is it these professionals are too busy and being narrowly focused on doing something else?

  • PDF

Precise Orbit Determination of GPS using Bernese GPS Software

  • Baek, Jeong-Ho;Cho, Sung-Ki;Jo, Jung-Hyun;Park, Jong-Uk
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.267-270
    • /
    • 2006
  • The International GNSS Service (IGS) has managed the global GNSS network and provided the highest quality GNSS data and products, which are GPS ephemerides, clock information and Earth orientation parameter, as the standard for GNSS. An important part of its works is to provide the precise orbits of GPS satellites. GPS satellites send their orbit information (broadcast ephemerides) to users and their accuracies are approximately 1.6 meters level, but those accuracies are not sufficient for the high precise applications which require millimeters precision. The current accuracies of the IGS final orbits are within 5 centimeters level and they are used for Earth science, meteorology, space science, and they are made by the IGS analysis centers and combined by the IGS analysis center coordinator. The techniques making the products are very difficult and require the high technology. The Korea Astronomy and Space Science Institute (KASI) studies to make the IGS products. In this study, we developed our own processing strategy and made GPS ephemerides using Bernese GPS software Ver. 5.0. We used the broadcast ephemerides as the initial orbits and processed the globally distributed 150 IGS stations. The result shows about 6 to 8 centimeters in root-mean-squares related to IGS final orbits in each day during a week. We expect that this study can contribute to secure our own high technology.

  • PDF

A Study on the Accuracy of GNSS Height Measurement Using Public Control Points (공공기준점을 이용한 GNSS 높이측량 정밀도 분석 연구)

  • WON, Doo-Kyeon;CHOI, Yun-Soo;YOON, Ha-Su;LEE, Won-Jong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.2
    • /
    • pp.78-90
    • /
    • 2021
  • In order to construct a precision geoid, it has been diversified into land, sea, aviation, and satellite gravity measurement methods, and measurement technology has developed, making it possible to secure high-resolution, high-precision gravity data. The construction of precision geoids can be fast and conveniently decided through GNSS surveys without separate leveling, and since 2014, the National Geographic Information Institute has been developing a hybrid geoid model to improve the accuracy of height surveying based on GNSS. In this study, the results of the GNSS height measurement were compared and analyzed choosing existing public reference points to verify the GNSS height measurement of public surveys. Experiments are conducted with GNSS height measurements and analyzed precision for public reference points on coastal, border, and mountainous terrain presented as low-precision areas or expected-to-be low-precision in research reports. To verify the GNSS height measurement, the GNSS ellipsoid height of the surrounding integrated datum to be used as a base point for the GNSS height measurement at the public datum. Based on the checked integrated datum, the GNSS ellipsoid of the public datum was calculated, and the elevation was calculated using the KNGeoid18 model and compared with the results of the direct level measurement elevation. The analysis showed that the results of GNSS height measurement at public reference points in the coastal, border, and mountainous areas were satisfied with the accuracy of public level measurement in grades 3 and 4. Through this study, GNSS level measurement can be used more efficiently than existing direct level measurements depending on the height accuracy required by users, and KNGeoids 18 can also be used in various fields such as autonomous vehicles and unmanned aerial vehicles.

State of the Art on GNSS Reflectometry and Marine Applications (위성신호 반사계측(GNSS-R) 기술 현황과 해양 응용분야)

  • Seo, Kiyeol;Park, Sang-Hyun;Park, Jihye
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.402-408
    • /
    • 2021
  • GNSS-Reflectometry (GNSS-R) is a technique for measuring and analyzing signals transmitted from satellites, reflecting on the surface of land or sea. GNSS-R is mainly used for measuring the water level variation, typhoon and meteorological anomaly, soil moisture, and snow depth. This paper describes the concept and measurement principle of GNSS-R technology, especially focusing on the field of marine utilization and its feasibility. In particular, it presents the applications of this technique for monitoring the safety of marine environment as well as the marine vessel and their utilization areas based on currently available infrastructure on the ground and maritime reference stations, such as the existing differential GNSS reference stations and integrity monitors (DGNSS RSIM), and GNSS reference station infrastructure, using the ground-based and the satellite-based GNSS-R approaches.

Network-RTK GNSS for Land Vehicle Navigation Application (Network-RTK GPS 기반 자동차 정밀 위치 추정)

  • Woon, Bong-Young;Lee, Dong-Jin;Lee, Sang-sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.424-431
    • /
    • 2017
  • These days land vehicle navigation system is a subject of great interest. The GNSS(Global Navigation Satellite System) is the most popular technology for out door positioning. However, The GNSS is incapable of providing high accuracy and reliable positioning. For that reason, we applied Network-RTK in vehicle to improve the accuracy of GNSS performance. In this network-RTK mode, the GNSS error are significantly decreased. In this paper, we explain ntrip client program for network-RTK mode and show the result of experiments in various environments.

Circumstance Change of GNSS & Application Strategy of Navigation Technology for Modem Weapon System (GNSS 구축 환경변화와 현대무기체계에의 항법기술 사용전략)

  • Ko, Kwang-Soob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.267-275
    • /
    • 2010
  • Recently, the implementation & modern policy for Global Navigation Satellite System have actively been performed by USA, RUSSIA, EU & CHINA. Therefore 100+ navigation satellites will be in orbit by 2015, and the user of military and civil will benefit from the use of a total constellation of 100+ satellites. It means that the deepest dependence to GPS would be declined. In the paper, the latest technology development & implementation policy of GNSS have been analyzed. Specially, we focused on circumstance change of GNSS & application of navigation technology for modem weapon system. Finally, the application strategy of the integrated GNSS is suggested for military and civil as well.

A Residual Ionospheric Error Model for Single Frequency GNSS Users in the Korean Region (한국지역에서의 단일주파수 GNSS 사용자를 위한 전리층 잔류 오차 모델 개발)

  • Yoon, Moonseok;Ahn, Jongsun;Joo, Jung -Min
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.194-202
    • /
    • 2021
  • Ionosphere, one of the largest error sources, can pose potentially harmful threat to single-frequency GNSS (global navigation satellite system) user even after applying ionospheric corrections to their GNSS measurements. To quantitatively assess ionospheric impacts on the satellite navigation-based applications using simulation, the standard deviation of residual ionospheric errors is needed. Thus, in this paper, we determine conservative statistical quantity that covers typical residual ionospheric errors for nominal days. Extensive data-processing computes TEC (total electron content) estimates from GNSS measurements collected from the Korean reference station networks. We use Klobuchar model as a correction to calculate residual ionospheric errors from TEC (total electron content) estimate. Finally, an exponential delay model for residual ionospheric errors is presented as a function of local time and satellite elevation angle.