• Title/Summary/Keyword: GNSS interference detection

Search Result 8, Processing Time 0.024 seconds

A GNSS Interference Detection Method Based on Multiple Ground Stations

  • Kim, Sun Young;Kang, Chang Ho;Yang, Jeong Hwan;Park, Chan Gook;Joo, Jung Min;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.15-21
    • /
    • 2012
  • For a GNSS receiver's robustness against RFI and the high accuracy of navigation solution in GNSS, interference source detection and mitigation are needed. In this paper, an adaptive lattice IIR notch filter is employed to track single-tone continuous wave and swept continuous wave interference signals, and an interference detection method is proposed. Furthermore, this paper presents interference source characterization algorithm using multiple ground stations' interference detection results. The measurement of the signal powers from each ground station is used to build weighting factors to estimate the type of the interference. The performance of interference detection algorithm is simulated for scenarios of GPS signal in the presence of single-tone continuous wave interference and swept continuous wave interference.

Intentional GNSS Interference Detection and Characterization Algorithm Using AGC and Adaptive IIR Notch Filter

  • Yang, Jeong Hwan;Kang, Chang Ho;Kim, Sun Young;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.491-498
    • /
    • 2012
  • A Ground Based Augmentation System (GBAS) is an enabling technology for an aircraft's precision approach based on a Global Navigation Satellite System (GNSS). However, GBAS is vulnerable to interference, so effective GNSS interference detection and mitigation methods need to be employed. In this paper, an intentional GNSS interference detection and characterization algorithm is proposed. The algorithm uses Automatic Gain Control (AGC) gain and adaptive notch filter parameters to classify types of incoming interference and to characterize them. The AGC gain and adaptive lattice IIR notch filter parameter values in GNSS receivers are examined according to interference types and power levels. Based on those data, the interference detection and characterization algorithm is developed and Monte Carlo simulations are carried out for performance analysis of the proposed method. Here, the proposed algorithm is used to detect and characterize single-tone continuous wave interference, swept continuous wave interference, and band-limited white Gaussian noise. The algorithm can be used for GNSS interference monitoring in an excessive Radio Frequency Interference environment which causes loss of receiver tracking. This interference detection and characterization algorithm will be used to enhance the interference mitigation algorithm.

A Novel Repeat-back Jamming Detection Scheme for GNSS using a Combined Pseudo Random Noise Signal (통합의사잡음 신호를 사용한 GNSS의 재방송재밍 검출기법)

  • Yoo, Seungsoo;Yeom, Dong-Jin;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.977-983
    • /
    • 2014
  • A repeat-back jamming signal is an intentionally re-broadcasted GNSS (Global Navigation Satellite System) interference. In this paper, a novel repeat-back jamming detection scheme is proposed. The proposed scheme uses a combined pseudo random noise signal (C-PRN) and is available for a generic GNSS receiver with a single antenna. The C-PRN signal is made by combining several received pseudo random noise signals that had been transmitted from the visible GNSS satellites. Through a Monte-Carlo simulation, the detection probability of a repeat-back jamming signal detected with the proposed scheme is presented.

Station Based Detection Algorithm using an Adaptive Fading Kalman Filter for Ramp Type GNSS Spoofing (적응 페이딩 칼만 필터를 이용한 기준국 기반의 램프 형태 GNSS 기만신호 검출 알고리즘)

  • Kim, Sun Young;Kang, Chang Ho;Park, Chan Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.283-289
    • /
    • 2015
  • In this paper, a GNSS interference detection algorithm based on an adaptive fading Kalman filter is proposed to detect a spoofing signal which is one of the threatening GNSS intentional interferences. To detect and mitigate the spoofing signal, the fading factor of the filter is used as a detection parameter. For simulation, the effect of the spoofing signal is modeled by the ramp type bias error of the pseudorange to emulate a smart spoofer and the change of the fading factor value according to ramp type bias error is quantitatively analyzed. In addition, the detection threshold is established to detect the spoofing signal by analyzing the change of the error covariance and the effect of spoofing is mitigated by controlling the Kalman gain of the filter. To verify the performance analysis of the proposed algorithm, various simulations are implemented. Through the results of simulations, we confirmed that the proposed algorithm works well.

An Iterative MUSIC-Based DOA Estimation System Using Antenna Direction Control for GNSS Interference

  • Seo, Seungwoo;Park, Youngbum;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.367-378
    • /
    • 2020
  • This paper introduces the development of the iterative multiple signal classification (MUSIC)-based direction-of-arrival (DOA) estimation system using a rotator that can control the direction of antenna for the global navigation satellite system (GNSS) interference. The system calculates the spatial spectrum according to the noise eigenvector of all dimensions to measure the number of signals (NOS). Also, to detect the false peak, the system adjusts the array antenna's direction and checks the change's peak angles. The phase delay and gain correction values for system calibration are calculated in consideration of the chamber's structure and the characteristics of radio waves. The developed system estimated DOAs of interferences located about 1km away. The field test results show that the developed system can estimate the DOA without NOS information and detect the false peak even though the inter-element spacing is longer than the half-wavelength of the interference.

Performance of Interference Mitigation with Different Wavelets in Global Positioning Systems

  • Seo, Bo-Seok;Park, Kwi-Woo;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.165-173
    • /
    • 2019
  • In this paper, we apply a discrete wavelet packet transform (DWPT) to reduce the influence of interference in global positioning system (GPS) signals and compare the interference mitigation performance of various wavelets. By applying DWPT to the received signal, we can gradually divide the received signal band into low-pass and high-pass bands. After calculating the average power for the separate bands, we can determine whether there is interference by comparing the value with the given threshold. For a band that includes interference, we can reconstruct the whole band signal using inverse DWPT (IDWPT) after applying a nulling method that sets all of the wavelet coefficients to 0. The reconstructed signals are correlated with the pseudorandom noise (PRN) codes to acquire GPS signals. The performance evaluation is based on the number of satellite signals whose peak ratio (defined as the ratio of the first and second correlation peak values in the acquisition stage) exceeds the threshold. In this paper, we compare and evaluate the performance of 6 wavelets including Haar, Daubechies, Symlets, Coiflets, Biorthogonal Splines, and Discrete Meyer.

A Narrowband Interference Excision Algorithm in the Frequency Domain for GNSS Receivers

  • Shin, Mi-Young;Park, Chan-Sik;Lee, Ho-Keun;Lee, Dae-Yearl;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.359-364
    • /
    • 2006
  • Interference can seriously degrade the performance of GPS receiver because GPS signal has extremely low power at earth surface. This paper presents a Narrowband Interference Excision Filter (NIEF) in frequency domain that removes narrowband interferences with small signal loss. A NIEF transforms the received GPS signals with interferences into the frequency domain with FFT and then compute statistics such as mean and standard deviation to determine an excision threshold. All spectrums exceeding the threshold are removed and the remaining spectrums are restored by IFFT. A NIEF effectively can remove various and strong interferences with a simple structure. However, the signal power loss is unavoidable during FFT and IFFT. Besides the hamming window and overlap technique, a threshold-whitening technique and an adaptive detection threshold are adopted to effectively reduce the signal power loss. The performance of implemented NIEF is evaluated using real signals obtained by 12 bit GPS signal acquisition board. The output of NIEF is fed into the Software Defined Receiver to evaluate the acquisition and tracking performance. Experimental results shows that many types of interference such as single-tone CWI, AM, FM, swept CWI and multi-tones CWI are effectively mitigated with small signal power loss.

  • PDF

Spoofing Signal Detection Using Accelerometers in IMU and GPS Information (IMU 가속도계 센서와 GPS 정보를 이용한 기만신호 검출)

  • Kwon, Keum-Cheol;Yang, Cheol-Kwan;Shim, Duk-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1273-1280
    • /
    • 2014
  • This paper considers a GPS anti-spoofing problem. Spoofing is an intentional interference that mislead the GNSS receiver. The spoofing attack is very significant since the target receiver is not aware of being attacked from spoofing. Accelerometers can be used to detect the spoofing signal by being compared with the acceleration obtained from GPS information using Kalman filter. In this paper we propose an N by N-point average and M-point window algorithm to detect GPS spoofing by using accelerometers and GPS outputs. The performance of the proposed algorithm is analyzed using actual vehicle trajectory and spoofing trajectory generated from INS and GPS toolbox for simulation.