• 제목/요약/키워드: GNSS Applications

Search Result 71, Processing Time 0.023 seconds

The Technical Benefits of Future GNSS for Taiwan

  • Chiang, Kai-Wei;Yang, Ming;Tsai, Meng-Lun;Chang, Yao-Yun;Chu, Chi-Kuang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.3-8
    • /
    • 2006
  • The next decade promises drastic improvements and additions to global navigation satellite systems (GNSS). Plans for GPS modernization include a civilian code measurement on the L2 frequency and a new L5 signal at 1176.45 MHz. Current speculations indicate that a fully operational constellation with these improvements could be available by 2013. Simultaneously, the Galileo Joint Undertaking is in the development and validation stages of introducing a parallel GNSS called Galileo. Galileo will also transmit freely available satellite navigation signals on three frequencies and is scheduled to be fully operational as early as 2008. In other words, a dual system receiver (e.g., GPS+GALILEO) for general users can access six civil frequencies transmitted by at least fifty eights navigation satellites in space. The advent of GALILEO and the modernization of GPS raise a lot of attention to the study of the compatibility and interoperability of the two systems. A number of performance analyses have been conducted in a global scale with respect to availability, reliability, accuracy and integrity in different simulated scenarios (such as open sky and urban canyons) for the two systems individually and when integrated. Therefore, the scope of this article aims at providing the technical benefits analysis for Taiwan specifically in terms of the performance indices mentioned above in a local scale, especially in typical urban canyon scenarios. The conclusions gained by this study will be applied by the Land Survey Bureau of Taiwanese as the guideline for developing future GNSS tracking facilities and dual GNSS processing module for precise surveying applications in static and kinematic modes.

  • PDF

Geometric Sensitivity Index for the GNSS Using Inner Products of Line of Sight Vectors

  • Won, Dae Hee;Ahn, Jongsun;Sung, Sangkyung;Lee, Chulsoo;Bu, Sungchun;Jang, Jeagyu;Lee, Young Jae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.437-444
    • /
    • 2015
  • Satellite selection and exclusion techniques have been applied to the global navigation satellite system (GNSS) with the aim of achieving a balance between navigational performance and computational efficiency. Conventional approaches to satellite selection based on the best dilution of precision (DOP) are excessively computational and complicated. This paper proposes a new method that applies a geometric sensitivity index of individual GNSS satellites. The sensitivity index is derived using the inner product of the line of sight (LOS) vector of each satellite. First, the LOS vector is computed, which accounts for the geometry between the satellite and user positions. Second, the inner product of each pair of LOS vectors is calculated, which indicates the proximities of the satellites to one another. The proximity can be determined according to the sensitivity of each satellite. A post-processing test was conducted to verify the reliability of the proposed method. The proposed index and the results of a conventional approach that measures the dilution of precision (DOP) were compared. The test results demonstrate that the proposed index produces results that are within 96% of those of the conventional approach and reduces the computational burden. This index can be utilized to estimate the sensitivity of individual satellites, obtaining a navigation solution. Therefore, the proposed index applies to satellite selection and exclusion as well as to the sensitivity analyses of multiple GNSS applications.

Preliminary Study of Deep Learning-based Precipitation

  • Kim, Hee-Un;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.423-430
    • /
    • 2017
  • Recently, data analysis research has been carried out using the deep learning technique in various fields such as image interpretation and/or classification. Various types of algorithms are being developed for many applications. In this paper, we propose a precipitation prediction algorithm based on deep learning with high accuracy in order to take care of the possible severe damage caused by climate change. Since the geographical and seasonal characteristics of Korea are clearly distinct, the meteorological factors have repetitive patterns in a time series. Since the LSTM (Long Short-Term Memory) is a powerful algorithm for consecutive data, it was used to predict precipitation in this study. For the numerical test, we calculated the PWV (Precipitable Water Vapor) based on the tropospheric delay of the GNSS (Global Navigation Satellite System) signals, and then applied the deep learning technique to the precipitation prediction. The GNSS data was processed by scientific software with the troposphere model of Saastamoinen and the Niell mapping function. The RMSE (Root Mean Squared Error) of the precipitation prediction based on LSTM performs better than that of ANN (Artificial Neural Network). By adding GNSS-based PWV as a feature, the over-fitting that is a latent problem of deep learning was prevented considerably as discussed in this study.

Regional Optimization of NeQuick G Model for Improved TEC Estimation (NeQuick G의 TEC 예측 개선을 위한 지역 최적화 기법 연구)

  • Jaeryoung Lee;Andrew K. Sun;Heonho Choi; Jiyun Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.63-73
    • /
    • 2024
  • NeQuick G is the ionosphere model utilized by Galileo single-frequency users to estimate the ionospheric delay on each user-satellite link. The model is characterized by the effective ionization level (Az) index, determined by a modified dip latitude (MODIP) and broadcast coefficients derived from daily global space weather observations. However, globally fitted Az coefficients may not accurately represent ionosphere within local area. This study introduces a method for regional ionospheric modeling that searches for locally optimized Az coefficients. This approach involves fitting TEC output from NeQuick G to TEC data collected from GNSS stations around Korea under various ionospheric conditions including different seasons and both low and high solar activity phases. The optimized Az coefficients enable calculation of the Az index at any position within a region of interest, accounting for the spatial variability of the Az index in a polynomial function of MODIP. The results reveal reduced TEC estimation errors, particularly during high solar activity, with a maximum reduction in the RMS error by 85.95%. This indicates that the proposed method for NeQuick G can effectively model various ionospheric conditions in local areas, offering potential applications in GNSS performance analyses for local areas by generating various ionospheric scenarios.

Design and Performance of a Direct RF Sampling Receiver for Simultaneous Reception of Multiband GNSS Signals (다중대역 GNSS 신호 동시 수신을 위한 직접 RF 표본화 수신기 설계 및 성능)

  • Choi, Jong-Won;Seo, Bo-Seok
    • Journal of Broadcast Engineering
    • /
    • v.21 no.5
    • /
    • pp.803-815
    • /
    • 2016
  • In this paper, we design a direct radio frequency (RF) sampling receiver for multiband GNSS signals and demonstrate its performance. The direct RF sampling is a technique that does not use an analog mixer, but samples the passband signal directly, and all receiver processes are done in digital domain, whereas the conventional intermediate frequency (IF) receiver samples the IF band signals. In contrast to the IF sampling receiver, the RF sampling receiver is less complex in hardware, reconfigurable, and simultaneously converts multiband signals to digital signals with an analog-to-digital (AD) converter. The reconfigurability and simultaneous reception are very important in military applications where rapid change to other system is needed when a system is jammed by an enemy. For simultaneous reception of multiband signals, the sampling frequency should be selected with caution by considering the carrier frequencies, bandwidths, desired intermediate frequencies, and guard bands. In this paper, we select a sampling frequency and design a direct RF sampling receiver to receive multiband global navigation satellite system (GNSS) signals such as GPS L1, GLONASS G1 and G2 signals. The receiver is implemented with a commercial AD converter and software. The receiver performance is demonstrated by receiving the real signals.

Design and Applications of a Generalized Software-Based GNSS IF Signal Generator

  • Lim, Deok-Won;Park, Chan-Sik;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.211-215
    • /
    • 2006
  • In this paper, design and applications of a generalized, versatile and customizable IF signal generator that can model the modernized GPS and Galileo signal is given. It generates IF sampled data that can be directly used by a software receiver. Entire constellation of satellites which is independent of satellite-user geometry is easily determined using a real or simulated ephemeris data. Since the IF center frequency, sampling frequency and quantization bit number are user location dependent parameters, their effects are also considered in IF signal generator. The generalized IF signal generator will be very well suited for the development phase of a software receiver due to its versatility. The full access to the sampling frequency, front-end filter definition and ADC parameters also offers a great opportunity for cost-effective analysis of tracking loops and error mitigation techniques at the receiver level. Interference sources can be easily added to the generator to simulate specific environments. This software IF signal generator can also be used to feed a multi-frequency multi-system software receiver for the prototyping of a combined GPS/Galileo receiver. The test result using the generated signals and a real software receiver shows the effectiveness of the implemented IF signal generator.

  • PDF

Real-time GPS Ionospheric TEC Estimation over South Korea

  • Choi, Byung-Kyu;Yoo, Sung-Moon;Roh, Kyoung-Min;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.207-212
    • /
    • 2013
  • Ionosphere is one of the largest error sources when the navigational signals produced by Global Positioning System (GPS) satellites are transmitted. Therefore it is very important to estimate total electron contents (TEC) in ionosphere precisely for navigation, precise positioning and some other applications. When we provide ionospheric TEC values in real-time, its application can be expanded to other areas. In this study we have used data obtained from nine Global Navigation Satellite System (GNSS) reference stations which have been operated by Korea Astronomy and Space Science Institute (KASI) to detect ionospheric TEC over South Korea in real-time. We performed data processing that covers converting 1Hz raw data delivered from GNSS reference stations to Receiver INdependent Exchange (RINEX) format files at intervals of 5 minutes. We also analyzed the elevation angles of GPS satellites, vertical TEC (VTEC) values and their changes.

Analysis of Ionospheric Spatial Gradient for Satellite Navigation Systems (위성항법시스템 적용을 위한 전리층 지연값 기울기 연구)

  • Kim, Jeong-Rae;Yang, Tae-Hyoung;Lee, Eun-Sung;Jun, Hyang-Sig
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.898-904
    • /
    • 2006
  • Ionospheric storms, caused by the interaction between Solar and geomagnetic activities, may degrade the differential GNSS(Global Navigation Satellite Systems) performance significantly, and the importance of the ionospheric storm research is growing for the GBAS(Ground-Based Augmentation System) and SBAS(Satellite-Based Augmentation System) development. In order to support Korean GNSS augmentation system development, a software tool for analyzing the regional ionosphere is being developed and its preliminary results are discussed. After brief description of the ionosphere and ionospheric storm, the research topics on the GBAS applications are discussed. The need for ionospheric spatial gradient analysis is described and some results on the ionospheric spatial gradient during recent storm periods are discussed.

Integer ambiguity propagation method for a precise positioning using GNSS carrier phase measurements (GNSS 반송파 위상을 이용한 정밀 측위에서 미지정수 전파기법)

  • Han, Deok-Hee;Yun, Hee-Hak;Park, Chan-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.678-684
    • /
    • 2009
  • Many researches on the GNSS integer ambiguity resolution methods for precise positioning and attitude determination applications have been done. However, by the time invariant property of the integer ambiguity, the reuse of integer ambiguity without performing time consuming integer search procedure is possible. In this paper, a new efficient integer ambiguity propagation method is proposed. The initial integer ambiguity can be determined using the famous LAMBDA method and it is propagated with the propagation method. The proposed method can reconfigure the integer ambiguity using the previous epoch's integer ambiguity and new carrier phase measurements under environmental variations such as geometry changes, signal blockage and reacquisition. Experiments with real measurements show the proposed method can determine an integer ambiguity effectively.

Improvement of the Positioning Accuracy of a Single Frequency Receiver Using Observables of the Dual GPS Reference Stations (이중 GPS 기준국 관측정보를 이용한 단일주파수 수신기의 측위 정확도 향상)

  • Choi, Byung-Kyu;Park, Jong-Uk;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.3
    • /
    • pp.291-298
    • /
    • 2008
  • With the growth of civil and commercial applications, the Global Navigation Satellite System(GNSS) that provides the positioning, navigation, and timing information affects to our life. In order to meet all the requirements of civilian user, new positioning technology with the accuracy of 10cm level has been applied and the positioning accuracy is getting improved. In this study, dual coverage(DAEJ, SUWN) GPS measurements were applied to improve the positioning accuracy for GPS L1 single frequency users. We processed some GPS data obtained from the distributed test sites in the wide area over Korea Peninsula. As a result, the combined solution output using dual coverage showed more improved positioning accuracy than that of single coverage.