Browse > Article
http://dx.doi.org/10.5140/JASS.2013.30.3.207

Real-time GPS Ionospheric TEC Estimation over South Korea  

Choi, Byung-Kyu (Korea Astronomy & Space Science Institute)
Yoo, Sung-Moon (Korea Astronomy & Space Science Institute)
Roh, Kyoung-Min (Korea Astronomy & Space Science Institute)
Lee, Sang-Jeong (Chung-Nam National University)
Publication Information
Journal of Astronomy and Space Sciences / v.30, no.3, 2013 , pp. 207-212 More about this Journal
Abstract
Ionosphere is one of the largest error sources when the navigational signals produced by Global Positioning System (GPS) satellites are transmitted. Therefore it is very important to estimate total electron contents (TEC) in ionosphere precisely for navigation, precise positioning and some other applications. When we provide ionospheric TEC values in real-time, its application can be expanded to other areas. In this study we have used data obtained from nine Global Navigation Satellite System (GNSS) reference stations which have been operated by Korea Astronomy and Space Science Institute (KASI) to detect ionospheric TEC over South Korea in real-time. We performed data processing that covers converting 1Hz raw data delivered from GNSS reference stations to Receiver INdependent Exchange (RINEX) format files at intervals of 5 minutes. We also analyzed the elevation angles of GPS satellites, vertical TEC (VTEC) values and their changes.
Keywords
GPS; ionosphere; TEC; real-time;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Komjathy A, Galvan DA, Stephens P, Butala MD, Akopian V, et al., Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study, Earth Planets Space, 64, 1298-1294 (2012).
2 Mannucci A, Iijima B, Sparks L, Pi X, Wilson BD, et al., Assessment of global TEC mapping using a threedimensional electron density model, J Atmos Sol Terr Phys, 61, 1227-1236 (1999).   DOI   ScienceOn
3 Mannucci A, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, et al., A global mapping technique for GPS-derived ionospheric total electron content measurements, Radio Sci, 33, 565-582 (1998).   DOI   ScienceOn
4 Otsuka Y, Ogawa T, Saito A, Tsugawa T, A new technique for mapping of total electron content using GPS network in Japan, Earth Planets Space, 54, 63-70 (2002).   DOI
5 Prikryl P, Ghoddousi-Fard R, Kunduri B, Thomas E, Coster A, et al., GPS phase scintillation and proxy index at high latitudes during a moderate geomagnetic storm, Ann Geophys, 31, 805-816 (2013).   DOI   ScienceOn
6 Sardon E, Rius A, Zarraoa N, Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations, Radio Sci, 29, 577-586 (1994).   DOI   ScienceOn
7 Skone S, Wide area ionosphere grid modeling in the auroral region, PhD thesis, University of Calgary (1998).
8 Spogli L, Alfonsi L, Franceschi G, Romano V, Aquino M, et al., Climatology of GPS ionospheric scintillations over high and mid-latitude European regions, Ann Geophys, 27, 3429-3437 (2009)   DOI   ScienceOn
9 Artru J, Ducic V, Kanamori H, Lognonne P, Marakami M, Ionospheric detection of gravity waves induced by tsunami, Geophys J Int, 160, 840-848 (2005).   DOI   ScienceOn
10 Blewitt G, Hammond WC, Kreemer C, Plag HP, Stein S, et al., GPS for real-time earthquake source determination and tsunami warning systgems, J Geod, 83, 335-343 (2009). http://dx.doi.org/10.1007/s00190-008-0262-5   DOI
11 Calais E, Minster JB, GPS, earthquakes, the ionosphere, and the space shuttle, Phys. Earth Planet Inter, 105, 167-181 (1998).   DOI   ScienceOn
12 Choi BK, Cho JH, Lee SJ, Estimation and analysis of GPS receiver differential code biases using KGN in Korean Peninsula, Adv Space Res, 47, 1590-1599 (2011).   DOI   ScienceOn
13 Davis K, Hartmann GK, Studying the ionosphere with the Global Positioning System, Radio Sci, 32, 1695-1703 (1997).   DOI   ScienceOn
14 Fedrizzi M, de Paula E, Kantor IJ, Langley R, Komjathy A, et al., Study of the March 31, 2001 magnetic storm effects on the ionospheric GPS data, Adv Space Res, 36, 534-545 (2005).   DOI   ScienceOn
15 Gao Y, Liu Z, Precise ionosphere modeling using regional GPS network data, J Global Positioning Syst, 1, 18-24 (2002).   DOI
16 Heki K, Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, GRL, 38, L17312 (2011). http://dx.doi.org/10.1029/2011GL047908   DOI   ScienceOn
17 Afraimovich EL, Kosogorov EA, Lesyuta OS, Geomagnetic control of the spectrum of traveling ionospheric disturbances based on data from a global GPS network, Ann Geophys, 19, 7, 723-731 (2001).   DOI   ScienceOn
18 Kleusberg A, Kinematic Relative Positioning Using GPS Code and Carrier Beat Phase Observations, Marine Geod, 10, 257-274 (1986).   DOI   ScienceOn
19 Klobuchar JA, Ionospheric Time-Delay Algorithm for Single-Frequency GPS User, IEEE Trans Aero Electro Sys, AES-23, 325-331 (1987).   DOI   ScienceOn
20 Komjathy A, Global Ionospheric Total Electron Content Mapping Using the Global Positioning System, PhD Thesis, University of New Brunswick (1997).