• Title/Summary/Keyword: GNSS Applications

Search Result 71, Processing Time 0.021 seconds

The Research of Pseudolite technology by comparison with each applications for marine applications (해양분야 응용을 위한 의사위성 실내항법기술의 적용 대상별 비교 연구)

  • Shim, Woo-Seong;Suh, Sang-Hyun;Lee, Sang-Jeong;Park, Chan-Sik;Ki, Chang-Don
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.6-11
    • /
    • 2002
  • A term of GNSS(Global Navigation Satellite System) is widely used to represent a navigation method for global area using satellite in space orbit 1his system can provide accurate and continuous position, and timing sources synchronized to UTC. There are, however, certain disadvantage that system can not operate without line of sight environment to satellite, or system failure of either satellite or control station. It is the pseduolite technology for using indoor and also for back-up equipment of foreign system failure. Especially, ocean applications widely use the GNSS system for navigation, surveying, timing, and management of traffic, so, system failure of GNSS will be very critical problem to affect many aspects of ocean field. In this paper, we experimented the pseudolite technology for several application field to compare the result in different environment. We used the common CDGPS algorithm for in-door navigation and experimented in ocean engineering basin with metallic wall and gymnasiums with concrete wall. We also investigated the comparison result and considerations for ocean applications of pseudolite technology.

  • PDF

Data Quality Analysis of Korean GPS Reference Stations Using Comprehensive Quality Check Algorithm (종합적 품질평가 기법을 이용한 국내 GPS 상시관측소의 데이터 품질 분석)

  • Kim, Minchan;Lee, Jiyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.689-699
    • /
    • 2013
  • During extreme ionospheric storms, anomalous ionospheric delays and gradients could cause potential integrity threats to users of GNSS (Global Navigation Satellite System) augmentation systems. GNSS augmentation ground facilities must monitor these ionospheric anomalies defined by a threat model and alarm the users of safely-of-life applications within time-to-alerts. Because the ionospheric anomaly threat model is developed using data collected from GNSS reference stations, the use of poor-quality data can degrade the performance of the threat model. As the total number of stations increases, the number of station with poor GNSS data quality also increases. This paper analyzes the quality of data collected from Korean GPS reference stations using comprehensive GNSS data quality check algorithms. The results show that the range of good and poor qualities varies noticeably for each quality parameter. Especially erroneous ionospheric delay and gradients estimates are produced due to poor quality data. The results obtained in this study should be a basis for determining GPS data quality criteria in the development of ionospheric threat models.

The height variation of F2 peak density using Anyang Ionosonde measurements for GNSS ionospheric model

  • Kim, Eo-Jin;Chung, Jong-Kyun;Kim, Yong-Ha;Cho, Jung-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.24.3-24.3
    • /
    • 2008
  • The signals transmitted from satellites of Global Navigation Satellite System (GNSS) interact with the plasma of the ionosphere. To study the impact of the ionospheric plasma on GNSS applications a comprehensive knowledge of the ionosphere is required. Especially the correct measurement of the ionosphere such as the peak height of the F2 layer peak electron density (hmF2) is important for the GNSS ionospheric model. Anyang ionosonde station ($37.39^{\circ}N$, $126.95^{\circ}E$) has been operating from October 2000 and the accumulated data for 8 years may allow us to obtain climatological characteristics of middle latitude ionospheric F region for GNSS application. We analyzed the variations of the hmF2 and NmF2 over Anyang station for different conditions of solar activity, geomagnetic activity, season, and local time, and we compared our results with the IRI model.

  • PDF

Accuracy Improvement of Multi-GNSS Kinematic PPP with EKF Smoother

  • Choi, Byung-Kyu;Sohn, Dong-Hyo;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.83-89
    • /
    • 2021
  • The extended Kalman filter (EKF) is widely used for global navigation satellite system (GNSS) applications. It is difficult to obtain precise positions with an EKF one-way (forward or backward) filter. In this paper, we propose an EKF smoother to improve the positioning accuracy by integrating forward and backward filters. For the EKF smoother experiment, we performed PPP using GNSS data received at the DAEJ reference station for a month. The effectiveness of the proposed approach is validated with multi-GNSS kinematic PPP experiments. The EKF smoother showed 35%, 6%, and 22% improvement in east, north, and up directions, respectively. In addition, accurate tropospheric zenith total delay (ZTD) values were calculated by a smoother. Therefore, the results from EKF smoother demonstrate that better accuracy of position can be achieved.

Analysis on GNSS Spoofing signal effects using SDR receiver (SDR 수신기를 이용한 위성항법 기만신호 효과도 분석)

  • Cho, Ji-haeng
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.97-102
    • /
    • 2019
  • The GNSS(Global Navigation Satellite System) provides important information such as Position and Navigation, Timing(PNT) to various weapon systems in the military. as a result, applications that employ satellite navigation systems are increasing. therefore, a number of studies have been conducted to deceive the weapon systems that employ GNSS. GNSS spoofing denotes the transmission of counterfeit GNSS-like signals with the intention to produce a false position and time within the victim receiver. In order to deceive the victim receiver, spoofing signal should be synchronized with GNSS signal in doppler frequency and code phase, etc. In this paper, Civilian GPS L1 C/A spoofing signals have been evaluated and analyzed by SDR receiver.

Development of a Simulation Tool to Evaluate GNSS Positioning Performance in Urban Area

  • Wu, Falin;Liu, Gang-Jun;Zhang, Kefei;Densley, Liam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.71-76
    • /
    • 2006
  • With the rapid development of spatial infrastructure in US, Europe, Japan, China and India, there is no doubt that the next generation Global Navigation Satellite System (GNSS) will improve the integrity, accuracy, reliability and availability of the position solution. GNSS is becoming an essential element of personal, commercial and public infrastructure and consequently part of our daily lives. However, the applicability of GPS in supporting a range of location-sensitive applications such as location based services in an urban environment is severely curtailed by the interference of the 3D urban settings. To characterize and gain in-depth understanding of such interferences and to be able to provide location-based optimization alternatives, a high-fidelity 3D urban model of Melbourne CBD built with ArcGIS and large scale high-resolution spatial data sets is used in this study to support a comprehensive simulation of current and future GNSS signal performance, in terms of signal continuity, availability, strength, geometry, positioning accuracy and reliability based on a number of scenarios. The design, structure and major components of the simulator are outlined. Useful time-stamped spatial patterns of the signal performance over the experimental urban area have been revealed which are valuable for supporting location based services applications, such as emergency responses, the optimization of wireless communication infrastructures and vehicle navigation services.

  • PDF

Software Library Design for GNSS/INS Integrated Navigation Based on Multi-Sensor Information of Android Smartphone

  • Kim, Youngki;Fang, Tae Hyun;Seo, Kiyeol
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.279-286
    • /
    • 2022
  • In this paper, we designed a software library that produces integrated Global Navigation Satellite System (GNSS) / Inertial Navigation System (INS) navigation information using the raw measurements provided by the GNSS chipset, gyroscope, accelerometer and magnetometer embedded in android smartphone. Loosely coupled integration method was used to derive information of GNSS /INS integrated navigation. An application built in the designed library was developed and installed on the android smartphone. And we conducted field experiments. GNSS navigation messages were collected in the Radio Technical Commission for Maritime Service (RTCM 3.0) format by the Network Transport of RTCM via Internet Protocol (NTRIP). As a result of experiments, it was confirmed that design requirements were satisfied by deriving navigation such as three-dimensional position and speed, course over ground (COG), speed over ground (SOG), heading and protection level (PL) using the designed library. In addition, the results of this experiment are expected to be applicable to maritime navigation applications using smart device.

Preliminary Study of Ionosphere for Global Navigation Satellite Systems (위성항법시스템 적용을 위한 전리층 기본 연구)

  • Yang, T.H.;Lee, Y.J.;Jun, H.S.;Nam, G.W.;Kim, J.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.55-62
    • /
    • 2006
  • Ionospheric signal delay is a critical factor for precision differential GNSS(Global Navigation Satellite Systems) applications such as GBAS(Ground-Based Augmentation System) and SBAS (Satellite-Based Augmentation System). Most concern is the impact of the ionospheric storm caused by the interaction between Solar and geomagnetic activities. After brief description of the ionosphere and ionospheric storm, ionospheric models for SBAS are discussed. History of recent ionospheric storms is reviewed and their impact on GNSS is discussed. In order to support Korean GNSS augmentation system development, a preliminary study on the regional ionosphere performed. A software tool for computing regional ionospheric maps is being developed, and initial results during a recent storm period is analyzed.

  • PDF

Error Analysis of GNSS Attitude Determination System (GNSS 자세결정시스템의 오차해석)

  • Hwang Dong-Hwan;Lee Sang-Jeong;Park Chan-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.300-306
    • /
    • 2006
  • In this paper an error analysis of 3-dimensional GNSS attitude determination system is given. The attitude error covariance matrix is derived and analyzed. It implies that attitude errors are affected by the baseline length and configuration, the satellites numbers and geometry, receiver measurement noises and the nominal attitude of the vehicle. By defining Euler Angle Dilution Of Precision (EADOP) which is analogous to GDOP, roll, pitch and yaw errors can be efficiently analyzed. However the expression of the attitude error is too complex to get some intuitions. Therefore with a commonly adopted assumption, new expressions for attitude error are derived. The formulas are easy to compute and represent the attitude error as a function of the nominal attitude of a vehicle, the baseline configuration and the receiver noise. Using the formula, the accuracy of the attitude can be analytically predicted without the computer simulations. Applications to some widely used configurations reveal the effectiveness of the proposed method.

Characteristics of the Float Solutions in Epoch-by-epoch GNSS Precise Positioning (Epoch-by-epoch GNSS 정밀 측위에서 실수해의 특성)

  • Han, Deok-Hee;Park, Chan-Sik;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1254-1257
    • /
    • 2009
  • This paper describes characteristics of the float solutions of epoch-by-epoch GNSS precise positioning. It is shown that the accuracy of the floating solutions which are obtained using both code and carrier phase measurements are same as that of the code measurements only solution. It implies that to get more accurate floating position, the quality of code measurements are more important than that of carrier phase measurements. The results are expanded to multiple frequencies applications to get the same conclusions.