• Title/Summary/Keyword: GNSS

Search Result 973, Processing Time 0.028 seconds

Evaluation of AIS-TWR for Maritime Asynchronous R-mode (해사업무용 비동기식 R-mode를 위한 AIS-TWR 성능 평가)

  • Shim, Woo-Seong;Lee, Sang-Jeong
    • Journal of Navigation and Port Research
    • /
    • v.41 no.3
    • /
    • pp.87-92
    • /
    • 2017
  • To enhance the reliability and/or resilience of the PNT service included in the e-Navigation strategy of the IMO, the evaluation of the AIS-TWR method for the asynchronous R-mode for maritime service, which is available even in the absence of the GNSS, is described. For the AIS-TWR, which is capable of ranging through message exchange even without high precision synchronization, the operation scenario and the error factors according to the AIS system specifications are proposed and analyzed. Cramer-Rao Lower Bound is presented for the performance evaluation of the AIS-TWR algorithm. A simulation by AIS-TWR method of two AIS systems in a 3 km static environment shows estimation error of about 41m compared to the real value..

Consideration on Taean Airport Curved Approach Using the Simulator (시뮬레이터를 이용한 태안비행장 Curved Approach에 대한 고찰)

  • Koo, Bon-Soo;Jun, Hyang-Sig;Jung, Myeong-Sook;Park, Soo-Bog;Hong, Seung-Beom;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.288-295
    • /
    • 2014
  • Current ILS is difficult for the many aircraft to access to the system at the same time because of it's system. And the equipments should be installed at the direction of every runway. Also, There is limitation that landing procedures must be have of only ILS single course when the aircraft land on the ground. hereupon, The more air traffic exist, the longer delay time of flight be. GBAS using the GNSS has been developed to overcome those limitations. Before flight test in Teean airport, this paper compares the taean approach procedure and curved approach procedure by using the simulator. Comparison study shows that curved approach procedure takes less flight time, low fuel consumpsion and make it possible to avoid noise airspace more than original procedure.

Design and Evaluation of a GNSS Receiver Network For Lane-By-Lane Traffic Monitoring (차선별 교통 모니터링을 위한 위성항법 수신기망 설계 및 성능 평가)

  • Kim, Hee-Sung;Lee, Hyung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.151-160
    • /
    • 2010
  • For the realization of future intelligent transportation systems, fine-grained lane-by-lane traffic monitoring and control functionalities are among the most important technology barriers to overcome. To satisfy the accuracy requirement for traffic monitoring, a GNSS receiver network is designed. The designed receiver network consists of three different types of entities; reference server, broadcaster, and client. For deployment flexibility, all the entities utilize the international message standard RTCM SC-104 version 3.0. For fine-grained traffic monitoring, the client is designed to utilize position-domain carrier-smoothed-code filters to provide accurate vehicle coordinates in spite of frequent addages and outages of visible satellites. An experiment result is presented to evaluate the positioning accuracy of the proposed method.

Applicability of Optical Flow Information for UAV Navigation under GNSS-denied Environment (위성항법 불용 환경에서의 무인비행체 항법을 위한 광류 정보 활용)

  • Kim, Dongmin;Kim, Taegyun;Jeaong, Hoijo;Suk, Jinyoung;Kim, Seungkeun;Kim, Younsil;Han, Sanghyuck
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.1
    • /
    • pp.16-27
    • /
    • 2020
  • This paper investigates the applicability of optical flow information for unmanned aerial vehicle (UAV) navigation under environments where global navigation satellite system (GNSS) is unavailable. Since the optical flow information is one of important measurements to estimate horizontal velocity and position, accuracy of the optical flow information must be guaranteed. So a navigation algorithm, which can estimate and cancel biases that the optical flow information may have, is suggested to improve the estimation performance. In order to apply and verify the proposed algorithm, an integrated simulation environment is built by designing a guidance, navigation, and control (GNC) system. Numerical simulations are implemented to analyze the navigation performance using this environment.

A Study on the Navigation Signal Characteristics of China Beidou Satellite Navigation System (중국의 BeiDou 위성항법시스템의 항법신호 분석에 관한 연구)

  • Ko, Kwang-Soob;Choi, Chang-Mook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1951-1958
    • /
    • 2015
  • The paper is focused on not only the system characteristics of BeiDou, China GNSS, but also the statistic analysis based on its real data received from the BeiDou's satellite navigation messages. The 6-7 satellites, which are more than minimum number of 4 satellites to obtain 3-D position, are available for receiving navigation signal in stable case. It was also verified that the available satellites are deviated to specific coordinate and their signals are still unstable. Only as long as the received signal with the high stability, the precision of the BeiDou navigation satellite navigation system was identified with 5m level in deviation. The Beidou system is expected to be rising as a darkhorse in the future of the global satellite navigation area.

Design of Integrity Monitor Functions for Maritime DGPS RSIM (해양용 DGPS 기준국의 무결성 감시 기능 설계)

  • Seo, Ki-Yeol;Park, Sang-Hyun;Cho, Deuk-Jae;Suh, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.395-400
    • /
    • 2009
  • In order to prepare for the DGNSS recapitalization and implementation of the functions for software based reference station and integrity monitor (RSIM) system, this paper proposes a design of integrity monitor functions of maritime differential GPS RSIM. The most critical functions of the integrity monitor (IM) are to generate and send flags to the reference station (RS) along with system feedback. Firstly, it presents the architecture of software based RSIM, and analyzes the performance standard of integrity monitor for maritime DGPS reference station This paper then designs the functions of integrity monitor for DGPS reference station based on the performance standard. Finally, this paper presents the results of performance analysis for the functionality of integrity monitor using the GNSS simulator. it discusses the study method and its application for the system implementation.

Development of Galileo E5 Signal Receiving Software for AltBoc Signal Modulation (AltBOC 변조 특성을 활용한 Galileo E5 신호 수신 소프트웨어 개발)

  • Jeon, Sang-Hoon;So, Hyoung-Min;Lee, Taik-Jin;Kim, Ghang-Ho;Jeon, Seung-Il;Kim, Chong-Won;Kee, Chang-Don;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.855-862
    • /
    • 2009
  • This paper contains the signal receiving algorithm for Galileo E5 AltBOC signal and the development of Galileo E5 signal receiving software. The software runs the process from signal acquisition to extracting measurement data to get navigation solution. It uses logged IF data file as an input. In signal acquisition stage, 1ms and delayed 1ms data are used for reducing correlation ross from secondary code and navigation bit conversion. Signal tracking stage is made of two stages which are coarse tracking and fine tracking. It is for taking advantage of AltBOC characteristic and resolving ambiguity problem due to BOC modulation. The functions of software are verified by signal processing using logged IF data from commercial GNSS simulator.

Precision GPS Orbit Determination and Analysis of Error Characteristics (정밀 GPS 위성궤도 결정 및 오차 특성 분석)

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.437-444
    • /
    • 2009
  • A bi-directional, multi-step numerical integrator is developed to determine the GPS (Global Positioning System) orbit based on a dynamic approach, which shows micrometer-level accuracy at GPS altitude. The acceleration due to the planets other than the Moon and the Sun is so small that it is replaced by the empirical forces in the Solar Radiation Pressure (SRP) model. The satellite orbit parameters are estimated with the least-squares adjustment method using both the integrated orbit and the published IGS (International GNSS Service) precise orbit. For this estimation procedure, the integration should be applied to the partial derivatives of the acceleration with respect to the unknown parameters as well as the acceleration itself. The accuracy of the satellite orbit is evaluated by the RMS (Root Mean Squares error) of the residuals calculated from the estimated orbit parameters. The overall RMS of orbit error during March 2009 was 5.2 mm, and there are no specific patterns in the absolute orbit error depending on the satellite types and the directions of coordinate frame. The SRP model used in this study includes only the direct and once-per-revolution terms. Therefore there is errant behavior regarding twice-per-revolution, which needs further investigation.

Determination of Precise Coordinates and Velocities of 142 International GNSS Service Stations to Realize Terrestrial Reference System (지구기준계 실현을 위한 142개 IGS 관측소 정밀좌표 및 속도 결정)

  • Baek, Jeong-Ho;Jung, Sung-Wook;Shin, Young-Hong;Cho, Jung-Ho;Park, Pil-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.3
    • /
    • pp.303-310
    • /
    • 2009
  • We processed seven years data of 142 IGS(International GNSS Service) stations were processed, which have been selected with an optimal network algorithm, to realize terrestrial reference system. To verify the result, a comparison with the ITRF2005 was given both in positions and velocities with transformation parameters estimation. The transformation parameters are within 4.3 mm in length, while the RMS(root mean square) difference of positions and velocities are 6.7 mm and 1.3 mm/yr in horizontal and 13.3 mm and 2.4 mm/yr in vertical, respectively, which represent good coincidences with ITRF2005. This research would help developing our own geodetic reference frame and may be applied for the global earth observations such as the global tectonics. A further improved TRF would be expected by applying various data processing strategies and with extension of data in number and observation period.

Fault Detection Performance Analysis of GNSS Integrity RAIM (GNSS 무결성을 위한 RAIM 기법의 고장검출 성능 분석)

  • Kim, Ji Hye;Park, Kwan Dong;Kim, Du Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.49-56
    • /
    • 2012
  • Performance analysis on RAIM, which is one of the techniques for monitoring integrity to ensure the reliability of GPS, was conducted in this study. RAIM is such a method which allows its user to monitor integrity in the stand-alone mode. Among the existing RAIM procedures, the representative methods including the RCM (Range Comparison Method), LSRM (Least Square Residual Method), Parity approach and WRAIM (Weighted RAIM) were evaluated, and their performance was analyzed. To validate the performance of the implemented algorithms, fault detection was tried on the clock malfunctioning event of PRN 23 occurred on January 1st, 2004. As a result, it was identified that the LSRM and the WRAIM detected all the faults happened in the event. In the case of RCM, all the states of fault were detected except for the error which occurred as a false alarm at one epoch. Furthermore, simulated biases were added for each satellite to analyze the sensitivity of each algorithm. Consequently, when biases of the 9-13 meters range were simulated for the RCM and LSRM algorithm, all the malfunctions were detected. For the WRAIM method, it could detect range biases greater than 15 meters.