• Title/Summary/Keyword: GMM Speaker model

Search Result 60, Processing Time 0.033 seconds

A Study on the Perlormance Variations of the Mobile Phone Speaker Verification System According to the Various Background Speaker Properties (휴대폰음성을 이용한 화자인증시스템에서 배경화자에 따른 성능변화에 관한 연구)

  • Choi, Hong-Sub
    • Speech Sciences
    • /
    • v.12 no.3
    • /
    • pp.105-114
    • /
    • 2005
  • It was verified that a speaker verification system improved its performances of EER by regularizing log likelihood ratio, using background speaker models. Recently the wireless mobile phones are becoming more dominant communication terminals than wired phones. So the need for building a speaker verification system on mobile phone is increasing abruptly. Therefore in this paper, we had some experiments to examine the performance of speaker verification based on mobile phone's voices. Especially we are focused on the performance variations in EER(Equal Error Rate) according to several background speaker's characteristics, such as selecting methods(MSC, MIX), number of background speakers, aging factor of speech database. For this, we constructed a speaker verification system that uses GMM(Gaussin Mixture Model) and found that the MIX method is generally superior to another method by about 1.0% EER. In aspect of number of background speakers, EER is decreasing in proportion to the background speakers populations. As the number is increasing as 6, 10 and 16, the EERs are recorded as 13.0%, 12.2%, and 11.6%. An unexpected results are happened in aging effects of the speech database on the performance. EERs are measured as 4%, 12% and 19% for each seasonally recorded databases from session 1 to session 3, respectively, where duration gap between sessions is set by 3 months. Although seasons speech database has 10 speakers and 10 sentences per each, which gives less statistical confidence to results, we confirmed that enrolled speaker models in speaker verification system should be regularly updated using the ongoing claimant's utterances.

  • PDF

An Implementation of Real-Time Speaker Verification System on Telephone Voices Using DSP Board (DSP보드를 이용한 전화음성용 실시간 화자인증 시스템의 구현에 관한 연구)

  • Lee Hyeon Seung;Choi Hong Sub
    • MALSORI
    • /
    • no.49
    • /
    • pp.145-158
    • /
    • 2004
  • This paper is aiming at implementation of real-time speaker verification system using DSP board. Dialog/4, which is based on microprocessor and DSP processor, is selected to easily control telephone signals and to process audio/voice signals. Speaker verification system performs signal processing and feature extraction after receiving voice and its ID. Then through computing the likelihood ratio of claimed speaker model to the background model, it makes real-time decision on acceptance or rejection. For the verification experiments, total 15 speaker models and 6 background models are adopted. The experimental results show that verification accuracy rates are 99.5% for using telephone speech-based speaker models.

  • PDF

Realization a Text Independent Speaker Identification System with Frame Level Likelihood Normalization (프레임레벨유사도정규화를 적용한 문맥독립화자식별시스템의 구현)

  • 김민정;석수영;김광수;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.8-14
    • /
    • 2002
  • In this paper, we realized a real-time text-independent speaker recognition system using gaussian mixture model, and applied frame level likelihood normalization method which shows its effects in verification system. The system has three parts as front-end, training, recognition. In front-end part, cepstral mean normalization and silence removal method were applied to consider speaker's speaking variations. In training, gaussian mixture model was used for speaker's acoustic feature modeling, and maximum likelihood estimation was used for GMM parameter optimization. In recognition, likelihood score was calculated with speaker models and test data at frame level. As test sentences, we used text-independent sentences. ETRI 445 and KLE 452 database were used for training and test, and cepstrum coefficient and regressive coefficient were used as feature parameters. The experiment results show that the frame-level likelihood method's recognition result is higher than conventional method's, independently the number of registered speakers.

  • PDF

Safety Robust Speaker Recognition Against Utterance Variationsed (발성변화에 강인한 화자 인식에 관한 연구)

  • Lee Ki-Yong
    • Journal of Internet Computing and Services
    • /
    • v.5 no.2
    • /
    • pp.69-73
    • /
    • 2004
  • A speaker model In speaker recognition system is to be trained from a large data set gathered in multiple sessions. Large data set requires large amount of memory and computation, and moreover it's practically hard to make users utter the data inseveral sessions. Recently the incremental adaptation methods are proposed to cover the problems, However, the data set gathered from multiple sessions is vulnerable to the outliers from the irregular utterance variations and the presence of noise, which result in inaccurate speaker model. In this paper, we propose an incremental robust adaptation method to minimize the influence of outliers on Gaussian Mixture Madel based speaker model. The robust adaptation is obtained from an incremental version of M-estimation. Speaker model is initially trained from small amount of data and it is adapted recursively with the data available in each session, Experimental results from the data set gathered over seven months show that the proposed method is robust against outliers.

  • PDF

EM Algorithm with Initialization Based on Incremental ${\cal}k-means$ for GMM and Its Application to Speaker Identification (GMM을 위한 점진적 ${\cal}k-means$ 알고리즘에 의해 초기값을 갖는 EM알고리즘과 화자식별에의 적용)

  • Seo Changwoo;Hahn Hernsoo;Lee Kiyong;Lee Younjeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.141-149
    • /
    • 2005
  • Tn general. Gaussian mixture model (GMM) is used to estimate the speaker model from the speech for speaker identification. The parameter estimates of the GMM are obtained by using the Expectation-Maximization (EM) algorithm for the maximum likelihood (ML) estimation. However the EM algorithm has such drawbacks that it depends heavily on the initialization and it needs the number of mixtures to be known. In this paper, to solve the above problems of the EM algorithm. we propose an EM algorithm with the initialization based on incremental ${\cal}k-means$ for GMM. The proposed method dynamically increases the number of mixtures one by one until finding the optimum number of mixtures. Whenever adding one mixture, we calculate the mutual relationship between it and one of other mixtures respectively. Finally. based on these mutual relationships. we can estimate the optimal number of mixtures which are statistically independent. The effectiveness of the proposed method is shown by the experiment for artificial data. Also. we performed the speaker identification by applying the proposed method comparing with other approaches.

GMM based Nonlinear Transformation Methods for Voice Conversion

  • Vu, Hoang-Gia;Bae, Jae-Hyun;Oh, Yung-Hwan
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.67-70
    • /
    • 2005
  • Voice conversion (VC) is a technique for modifying the speech signal of a source speaker so that it sounds as if it is spoken by a target speaker. Most previous VC approaches used a linear transformation function based on GMM to convert the source spectral envelope to the target spectral envelope. In this paper, we propose several nonlinear GMM-based transformation functions in an attempt to deal with the over-smoothing effect of linear transformation. In order to obtain high-quality modifications of speech signals our VC system is implemented using the Harmonic plus Noise Model (HNM)analysis/synthesis framework. Experimental results are reported on the English corpus, MOCHA-TlMlT.

  • PDF

A Speaker Pruning Method for Reducing Calculation Costs of Speaker Identification System (화자식별 시스템의 계산량 감소를 위한 화자 프루닝 방법)

  • 김민정;오세진;정호열;정현열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.457-462
    • /
    • 2003
  • In this paper, we propose a speaker pruning method for real-time processing and improving performance of speaker identification system based on GMM(Gaussian Mixture Model). Conventional speaker identification methods, such as ML (Maximum Likelihood), WMR(weighting Model Rank), and MWMR(Modified WMR) we that frame likelihoods are calculated using the whole frames of each input speech and all of the speaker models and then a speaker having the biggest accumulated likelihood is selected. However, in these methods, calculation cost and processing time become larger as the increase of the number of input frames and speakers. To solve this problem in the proposed method, only a part of speaker models that have higher likelihood are selected using only a part of input frames, and identified speaker is decided from evaluating the selected speaker models. In this method, fm can be applied for improving the identification performance in speaker identification even the number of speakers is changed. In several experiments, the proposed method showed a reduction of 65% on calculation cost and an increase of 2% on identification rate than conventional methods. These results means that the proposed method can be applied effectively for a real-time processing and for improvement of performance in speaker identification.

Impostor Detection in Speaker Recognition Using Confusion-Based Confidence Measures

  • Kim, Kyu-Hong;Kim, Hoi-Rin;Hahn, Min-Soo
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.811-814
    • /
    • 2006
  • In this letter, we introduce confusion-based confidence measures for detecting an impostor in speaker recognition, which does not require an alternative hypothesis. Most traditional speaker verification methods are based on a hypothesis test, and their performance depends on the robustness of an alternative hypothesis. Compared with the conventional Gaussian mixture model-universal background model (GMM-UBM) scheme, our confusion-based measures show better performance in noise-corrupted speech. The additional computational requirements for our methods are negligible when used to detect or reject impostors.

  • PDF

GMM-Based Maghreb Dialect Identification System

  • Nour-Eddine, Lachachi;Abdelkader, Adla
    • Journal of Information Processing Systems
    • /
    • v.11 no.1
    • /
    • pp.22-38
    • /
    • 2015
  • While Modern Standard Arabic is the formal spoken and written language of the Arab world; dialects are the major communication mode for everyday life. Therefore, identifying a speaker's dialect is critical in the Arabic-speaking world for speech processing tasks, such as automatic speech recognition or identification. In this paper, we examine two approaches that reduce the Universal Background Model (UBM) in the automatic dialect identification system across the five following Arabic Maghreb dialects: Moroccan, Tunisian, and 3 dialects of the western (Oranian), central (Algiersian), and eastern (Constantinian) regions of Algeria. We applied our approaches to the Maghreb dialect detection domain that contains a collection of 10-second utterances and we compared the performance precision gained against the dialect samples from a baseline GMM-UBM system and the ones from our own improved GMM-UBM system that uses a Reduced UBM algorithm. Our experiments show that our approaches significantly improve identification performance over purely acoustic features with an identification rate of 80.49%.

Global Covariance based Principal Component Analysis for Speaker Identification (화자식별을 위한 전역 공분산에 기반한 주성분분석)

  • Seo, Chang-Woo;Lim, Young-Hwan
    • Phonetics and Speech Sciences
    • /
    • v.1 no.1
    • /
    • pp.69-73
    • /
    • 2009
  • This paper proposes an efficient global covariance-based principal component analysis (GCPCA) for speaker identification. Principal component analysis (PCA) is a feature extraction method which reduces the dimension of the feature vectors and the correlation among the feature vectors by projecting the original feature space into a small subspace through a transformation. However, it requires a larger amount of training data when performing PCA to find the eigenvalue and eigenvector matrix using the full covariance matrix by each speaker. The proposed method first calculates the global covariance matrix using training data of all speakers. It then finds the eigenvalue matrix and the corresponding eigenvector matrix from the global covariance matrix. Compared to conventional PCA and Gaussian mixture model (GMM) methods, the proposed method shows better performance while requiring less storage space and complexity in speaker identification.

  • PDF