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ABSTRACT⎯In this letter, we introduce confusion-based 
confidence measures for detecting an impostor in speaker 
recognition, which does not require an alternative hypothesis. 
Most traditional speaker verification methods are based on a 
hypothesis test, and their performance depends on the 
robustness of an alternative hypothesis. Compared with the 
conventional Gaussian mixture model–universal background 
model (GMM-UBM) scheme, our confusion-based measures 
show better performance in noise-corrupted speech. The 
additional computational requirements for our methods are 
negligible when used to detect or reject impostors. 

Keywords⎯Speaker recognition, speaker verification, open-
set speaker identification, confidence measure. 

I. Introduction 
In speaker recognition, detecting imposters is regarded as 

speaker verification. The posterior probability for speaker 
verification is represented by 
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where X is a feature vector sequence and cλ  is a claimed 
speaker model. The claimed speaker may be obtained from the 
result of speaker identification. By giving all speakers equal 
prior probability, the posterior probability can be rewritten as 
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where UBMλ  is a universal background model (UBM) [1] 
which represents the speaker-independent distribution of 
feature X. After all, in the hypothesis test, the alternative 
hypothesis is UBM and the likelihood ratio is compared with a 
predefined threshold to decide if the claimed speaker is 
accepted or rejected as follows: 
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In real situations, we should always consider the problem 
of noise. Speaker recognition performance is known to be 
degraded under mismatched conditions. To cope with 
environmental mismatch problems, many approaches have 
been studied with the categories of speech enhancement, 
feature compensation, model adaptation, and so on. In the 
confidence score for impostor detection in (3), noise 
corruption affects the likelihoods given by both the claimed 
speaker model and the UBM. If the noise corruption 
decreases the numerator in (3) while increasing the 
denominator, the likelihood ratio will be drastically decreased, 
and vice-versa. 

To cope with this noise problem, we take advantage of 
confusability between the claimed speaker model and its nearest 
neighbor models with different criteria. We assume that the most 
likely model is not easily changed with slight noise corruption. 
This assumption is also used in [2] with application to utterance 
verification. Similarly, the neighbor models of the claimed 
speaker model are not easily changed by slight noise corruption. 

In this letter we propose novel confidence scores using 
speaker confusability for robust impostor detection as a post-
processing of open-set speaker identification. 

Impostor Detection in Speaker Recognition Using 
Confusion-Based Confidence Measures 

 Kyuhong Kim, Hoirin Kim, and Minsoo Hahn  



812   Kyuhong Kim et al. ETRI Journal, Volume 28, Number 6, December 2006 

II. Confusion-Based Confidence Scores for Speaker 
Verification 

1. Speaker Confusion Rate (SCR) 

It is well known that the Gaussian mixture model (GMM) is 
a special case of the hidden Markov model (HMM). Each 
speaker HMM has a single state with multiple mixtures and the 
self-state transition probability is one. Thus, we can rewrite the 
Viterbi search algorithm under GMM-based constraints. The 
search score )( jtδ and path information )( jtψ can be 
represented as 
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where the search scores are recursively calculated in all speaker 
models and frames. In [3], a confusion-based confidence 
measure for utterance verification was introduced, where the 
momentary best-state sequence is traced during a Viterbi search, 
and then it is compared with a null hypothesis to calculate the 
confusion-based confidence score. In this letter, we use 
confusability in speaker verification. The momentary best-
speaker sequence in the Viterbi search is traced by the 
following criterion: 
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To quantify the confusability between the claimed speaker 
and the momentary best speakers, we calculate the coincidence 
rate, or speaker confusion rate (SCR) as  
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The SCR is compared with a threshold in order to decide 
whether the claimed speaker is to be accepted or not. The 
physical meaning of SCR is how much more confusion there is 
between the claimed speaker and other speakers. Thus, if the 
SCR is smaller than the threshold, the claimed speaker is 
accepted by the following decision rule: 
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As the most likely speaker models based on the search score 

are traced frame by frame, they are compared with the claimed 
speaker model. Since the SCR approach can reflect different 
frame sizes on calculating likelihood scores, it can be more 
noise-robust than the conventional GMM-UBM. However, 
towards the end of the speaker search, the score is the product 
of most frames. Thus, one of the drawbacks of SCR is the 
multiplication of frame likelihood errors while searching. 

2. Framewise Speaker Confusion Rate (FSCR) 

In text-independent speaker identification, the accumulated 
likelihood score )( jtδ  is always affected by noise corruption, 
which increases as frame processing proceeds. To lessen the 
effect of noise on frame likelihood errors, the decision criterion 
in (6) is modified frame by frame as 
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In a manner similar to the evaluation of the SCR, the 
confidence score, or framewise speaker confusion rate (FSCR) 
is determined by  
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Because the FSCR approach prevents errors from being 
multiplied over all the frame-level likelihoods, it can be more 
noise robust than SCR. 

3. Accumulated Speaker Confusion Rate (ASCR) 

A segment-level likelihood can be defined by 
)|,,,P( 11 jmnnn xxx λ−++ , where m is the length of a speech 

segment. Then the segment-level decision rule is defined as 
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where n = 1, 2,…, N–m+1. Then, the segment-level SCR is 
defined by 
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If m is equal to 1, the SCR(m=1) is identical to the FSCR. We 
can average all the possible segment-level SCRs to evaluate the 
accumulated SCR as 
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where the segmental weights have the following constraints, 
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Because the ASCR is the weighted sum of all the possible 
segmental confidence scores, it is a generalized confusion-
based confidence encompassing SCR and FSCR. Thus, the 
SCR and FSCR are special cases of ASCR. 

III. Experiments 

1. Databases 

For our experiments, we used the Korean Speaker 
Recognition Database distributed by the Electronics and 
Telecommunications Research Institute (ETRI). The database 
for our experiments consisted of 80,000 utterances of 50 
speakers. We set up our baseline which had 40 enrolled 
speakers, and the utterances of the remaining 10 speakers were 
used for impostors. A total of 64,000 utterances were used for 
training speaker-dependent models and a speaker-independent 
model, and 16,000 utterances were used for performance 
evaluations. For noise conditions, we considered two kinds of 
noise conditions: sporadic noise and car noise conditions. As a 
sporadic noise source, a clapping sound was collected using a 
condenser microphone with 16 kHz and added to clean speech. 
Car noise was collected from a KIA Sephia at a speed of 100 
km/h with all of the windows closed; the car noise was then 
added to clean speech with the signal-to-noise power ratios 
(SNRs) of 5 dB, 10 dB, and 20 dB. 

2. Experimental Results 

A Gaussian mixture model was used for enrolled speaker 
models and the universal background model trained by an EM 
algorithm [4]. The number of Gaussian mixtures was 512 for 
both speaker model and universal background model. Every 
utterance was pre-emphasized with a factor of 0.97, and a 20 ms 
Hamming window was applied with 10 ms overlapping. A 
speech activity detector was then used to discard silence and 
unvoiced frames by simply tracing frame energy because we 
assumed that only voiced speech frames play a major role in 
discriminating speakers. The feature vector for each surviving 
frame consisted of 12th-order static and delta mel-frequency 
cepstral coefficients, resulting in the final 24th-order feature vector. 

To investigate the operational characteristics of the 
conventional and proposed methods, two error terms were 
used: a false alarm and a false rejection. As the threshold 
changed, we found the equal error rate (EER), the error rate 
when the false alarm is equal to the false rejection. Table 1 
shows EERs of the conventional method and the proposed  

Table 1. EERs under different noise conditions (%). 

Noise conditions GMM-UBM SCR FSCR ASCR

Clean 0.39 1.27 0.61 0.71

Sporadic 2.80 3.42 2.03 2.23

20 dB 5.68 2.23 0.65 0.96

10 dB 10.05 8.12 2.05 2.78Car 

5 dB 22.37 19.34 11.72 10.96

Multi-condition 8.26 6.88 3.41 3.53

Table 2. EERs in the multi-condition using 512, 1024, and 2048 
Gaussian mixtures (%). 

Methods
Mixtures 

GMM-UBM SCR FSCR ASCR

512 8.26 6.88 3.41 3.53 

1024 6.92 6.80 2.86 3.24 

2048 6.86 6.62 2.68 3.21 

Table 3. Speaker identification error rate (ER) under different noise 
conditions. 

Noise condition GMM (% ER) ASCR (% ER) Improvement (%)

Clean 0.11 0.11    0 

Sporadic 3.24 2.47    23.8 

20 dB 1.19 0.16    86.6 

10 dB 15.68 3.90    75.1 Car

5 dB 46.24 30.35    34.4 

Multi-condition 13.29 7.40    44.3 

 

methods. In our experiments, the weights (wm) in (14) were set 
to 1/N.  

Under clean conditions, the GMM-UBM approach is 
superior to the confusion-based approaches because GMM-
UBM can be the best solution in an ideal environment. 
However, our confusion-based approaches show better 
performance than the GMM-UBM under different noise 
conditions. Because different kinds of noise are frequently 
involved in real environments, our confusion-based approach 
can be more practical. 

In additional experiments, 1024 and 2048 Gaussian mixtures 
were involved for the performance evaluations shown in Table 
2. The proposed confusion-based methods are consistently 
superior to the GMM-UBM. 

Table 3 shows the performance of speaker identification 
compared with the traditional maximum likelihood-based 
GMM approach [5], [6] under different noise conditions, in 
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which 50 speakers were enrolled. From the results, we can 
confirm that the ASCR is a very useful method for speaker 
identification as well as speaker verification. In a matched 
clean condition, the conventional GMM-based approach can 
be the best solution for speaker identification. However, as 
shown in Tables 1 and 3, the GMM-based approaches have 
shown drastic performance degradations in noise conditions. 
Therefore, in noisy conditions, our ASCR can be a good 
solution for the task of detecting or rejecting impostors in open-
set speaker identification. 

IV. Conclusions 

To detect or reject impostors in text-independent speaker 
recognition applications, confusion-based confidence measures 
are proposed. Although our measures have shown slight 
performance degradation in a clean condition, the degradation 
is negligible and we confirm that FSCR and ASCR are more 
practical and have better performance in noisy conditions. The 
computational requirement for our confusion-based approaches 
is heavy from the viewpoint of traditional speaker verification 
tasks, because it increases in proportion to the number of 
enrolled speakers. However, if the ASCR is used to detect or 
reject impostors in the application to open-set speaker 
identification, two advantages are obtained. First, the 
computational requirements are very low in the case that all the 
frame-level likelihood scores are already calculated in the 
speaker identification stage. Secondly, the ASCR, as an 
identification score, can be directly used for speaker 
verification. The GMM-UBM always requires additional 
calculations for alternative model likelihood, but the ASCR 
does not require additional computations. 

One of the drawbacks in our approach is that when the 
number of enrolled speaker is small, our confusion-based 
approaches fail to represent the confusability well. To 
overcome this problem, our future work will include finding a 
virtual speaker model set in order to effectively represent the 
confusability. 
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