• Title/Summary/Keyword: GMA welding process

Search Result 114, Processing Time 0.023 seconds

A Study on Dynamic Characteristics of Welding voltage and Welding Current At GMAW (GMA 용접에서 전압과 전류의 동특성에 관한 연구)

  • Kim, Myun-Hee;Choi, Young-Geun;Lee, Moon-Hwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.2
    • /
    • pp.207-213
    • /
    • 2001
  • Welding variables and condition in gas metal arc welding (GMAW) effect on the weld quality and productivity, extensive research efforts have been made to analyze the welding variables and conditions. In this study dynamic behavior of GMAW system is investigated using the chararcteristic equations of the power supply. wire and welding arc. Characteristic equation of wire is modified to include the effect of droplets attached at the electrode tip. The dynamic characteristics of arc length, current, voltage with respect to the step, ramp inputs of CTWD was simulated. From results of simulation, some predictions about dynamic characteristics of GMAW and welding process are available. The proposed simulator and results appear to be utilized to determine the proper welding conditions, to be improved by considering power supply dynamic characteristics.

  • PDF

Prediction of the Bead Width Using an Artificial Neural Network (신경회로망을 이용한 비드폭 예측)

  • 김일수;손준식;박창언;하용훈;성백섭
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.48-54
    • /
    • 2000
  • Adaptive control in the robotic GMA(Gas Metal Arc) welding is employed to monitor information about weld characteristics and process parameters as well; as t modify those parameters to hold weld. The objectives of this paper are to realize the mapping characteristics of bead width through the neural network and multiple regression method as well as to select the most accurate model in order to control the weld quality(bead width0. The experimental results show that the proposed neural network estimator can predict bead width with reasonable accuracy, and guarantee the uniform weld quality.

  • PDF

Weld Pool Analysis by Driving force Acting on the Weldment (용접부에 작용하는 구동력에 의한 용융풀 거동 분석)

  • 김일수;김학형;조선영;강봉용;강문진;유관종
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.184-190
    • /
    • 2004
  • Over the last few years, there has been a growing interest in quantitative representation of the weld pools in order to relate the processing conditions to the driving forces of the weldment produced and to use this information for the optimization of the welding process. A theoretical model offers a powerful alternative to check the physical concepts of the welding process and the effects of driving forces. To solve this problem, a 2-D thermo-fluid model were eve loped for determining temperature and velocity distribution for the GMA welding process.

  • PDF

The Welding Process Control Using Neural Network Algorithm (Neural Network 알고리즘을 이용한 용접공정제어)

  • Cho Man Ho;Yang Sang Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.84-91
    • /
    • 2004
  • A CCD camera with a laser stripe was applied to realize the automatic weld seam tracking in GMAW. It takes relatively long time to process image on-line control using the basic Hough transformation, but it has a tendency of robustness over the noises such as spatter and arc tight. For this reason, it was complemented with adaptive Hough transformation to have an on-line processing ability for scanning specific weld points. The adaptive Hough transformation was used to extract laser stripes and to obtain specific weld points. The 3-dimensional information obtained from the vision system made it possible to generate the weld torch path and to obtain the information such as width and depth of weld line. In this study, a neural network based on the generalized delta rule algorithm was adapted for the process control of GMA, such as welding speed, arc voltage and wire feeding speed.

Position welding for internal welded specimen using laser-GMA hybrid welding (내면 용접부재의 전자세 레이저-아크 하이브리드 용접 연구)

  • Ahn, Young-Nam;Kim, Cheolhee;Kim, Jeonghan
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.54-60
    • /
    • 2015
  • Laser-arc hybrid welding has been considered as an effective pipe girth welding process since early 2000's. Tolerance for fit-up offsets such as gap and edge misalignment is one of most important requirements in pipe girth laser-arc hybrid welding, and several approaches using parameter optimization, a laser beam scanning and an arc oscillation have been tried. However the required offset tolerance has not been fully accomplished up to now and laser-arc hybrid welding has not been widely applied in pipeline construction than expected, despite of its high welding speed and deep penetration. In this study, internal welding was adopted to ensure the offset tolerance and sound back bead. The effect of welding parameters on bead shape was investigated at the flat position. Also tolerances for gap and edge misalignment were verified as 0.5 mm and 2.0 mm, respectively. The position welding trials were conducted at several welding positions from the flat to the overhead position in a downward direction. With the fixed welding speed, arc current for gas metal arc welding current and laser output power, adequate welding voltages for gas metal arc welding were suggested for each position.

Development of Inference Algorithm for Bead Geometry in GMAW (GMA 용접의 비드형상 추론 알고리즘 개발)

  • Kim, Myun-Hee;Bae, Joon-Young;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.132-139
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) processes, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality. Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWD (contact-tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using neuro-fuzzy algorithm. Neural networks was applied to design FL(fuzzy logic). The parameters of input membership functions and those of consequence functions in FL were tuned through the method of learning by backpropagation algorithm. Bead geometry could be reasoned from welding current, arc voltage, travel speed on FL using the results learned by neural networks. On the developed inference system of bead geometry using neuro-furzy algorithm, the inference error percent of bead width was within $\pm$4%, that of bead height was within $\pm$3%, and that of penetration was within $\pm$8%. Neural networks came into effect to find the parameters of input membership functions and those of consequence in FL. Therefore the inference system of welding quality expects to be developed through proposed algorithm.

A Study on Rotating Arc Using Hollow Shaft Motor (중공축 모터를 이용한 회전아크에 관한 연구)

  • 김철희;나석주
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.49-54
    • /
    • 2000
  • High speed rotating arc process, forming a flat bead surface with shallow penetration depth, can be applied to the automatic seam tracking, because the amplitude of current waveform increases at high rotation speed. Two high speed arc rotation mechanisms have been developed in Japan and Germany b rotating the electrode nozzle using an external motor, which are used prevalently for narrow gap and conventional seam welding. In this study, a new rotation mechanism was developed by using a hallow shaft motor designed to be installed in the electrode nozzle. By rotating the welding arc, the amplitude of current waveform increases remarkably since the self-regulation of arc is not fully performed. Experiments show that the arc sensor with high-speed rotation arc has improved its responsiveness and sensitivity.

  • PDF

POOL MONITORING IN GMAW

  • Absi Alfaro, S.C.;de Carvallio, G.C.;Motta, J.M.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.307-313
    • /
    • 2002
  • This paper describes a weld pool monitoring technique, which is based on the weld pool image analysis. The proposed image analysis algorithm uses machine vision techniques to extract geometrical information from the weld pool image such as maximum weld pool width, gap width and misalignment between the joint longitudinal axis and the welding wire. These can be related to the welding parameters (welding voltage and current, wire feed speed and standoff) to produce control actions necessary to ensure that the required weld quality will be achieved. The experiments have shown that the algorithm is able to produce good estimates of the weld pool geometry; however, the adjustment of the camera parameters affects the image quality and, consequently, has a great influence over the estimation.

  • PDF

The effect of Heat input and PWHT on the microstructure and mechanical properties of HSB600 steel weldments (HSB600강 GMA 용접부에서 입열량과 용접후 열처리가 미세조직과 기계적 특성에 미치는 영향)

  • Koh, Jin-Hyun;Kim, Nam-Hoon;Jang, Bok-Su;Ju, Dong-Hwi;Lim, Young-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5405-5411
    • /
    • 2011
  • The effects of heat input (1.5~3.6 kJ/mm) and post weld heat treatment (PWHT, $600^{\circ}C$, 40hr.) on the TMCP HSB600 steel weldments made by GMAW process were investigated. The tensile strengths and hardness of as-welded specimens were decreased as heat input increased, but CVN (Charpy V-Notch) impact energy did not show any differences. The fine-grained acicular ferrite was mainly formed in the low heat input while polygonal and side plate ferrites were dominated in the high heat inputs. Meanwhile, tensile strength and hardness of PWHT weldments were decreased due to the coarsening and globular of microstructure as well as reduction of residual stresses.