• Title/Summary/Keyword: GLUT2 gene

Search Result 55, Processing Time 0.036 seconds

The Effects of Dietary Supplementation of Vitamin C or E on the Expressions of Endoplasmic Reticulum Stress, Lipid and Glucose Metabolism Associated Genes in Broiler Chickens (비타민 C 및 E의 첨가 급여가 육계의 소포체 스트레스와 지방 및 포도당 대사 연관 유전자의 발현에 미치는 영향)

  • Park, Jeong Geun;An, Young Sook;Sohn, Sea Hwan;Jang, In Surk;Moon, Yang Soo
    • Korean Journal of Poultry Science
    • /
    • v.40 no.2
    • /
    • pp.147-155
    • /
    • 2013
  • This study was conducted to evaluate the effects of dietary supplementation of vitamin C or E on the expressions of endoplasmic reticulum (ER) stress, lipid and glucose metabolism associated genes in broiler chickens. A total of 216 one-day-old male broilers was randomly alloted to 4 treatments with 6 replicate pens per treatment and 9 broilers per pen for 35 days. The dietary treatments were control, vitamin C (control diet + ascorbic acid 200 mg/kg diet), vitamin E (control diet + ${\alpha}$-tocopherol 100 mg/kg diet), vitamin C + E (control diet + vitamin C 200 mg/kg + vitamin E 100 mg/kg), respectively. To evaluate gene expressions by quantitative real-time polymerase chain reaction, total RNA was extracted from the liver of the chicken at 35 days of age. Dietary supplementation of vitamins was significantly down-regulated the expression of stress marker genes including HSP70, HSP90, and HMGCR, as compared to the control (p<0.05). The expressions of ER stress associated genes also inhibited by supplementation of vitamins as well (p<0.05). Vitamin C supplementation suppressed the expression of lipid associated genes such as FASN, FATP1 and ACSL1. Vitamin supplementation did not affect the glucose transporters, GLUT2 and GLUT8, in the liver. The results of the present study indicated that dietary supplementation of vitamin C or E could be beneficial for the alleviating physiological stress in broiler chickens.

Regulation of glucose and glutamine metabolism to overcome cisplatin resistance in intrahepatic cholangiocarcinoma

  • So Mi Yang;Jueun Kim;Ji-Yeon Lee;Jung-Shin Lee;Ji Min Lee
    • BMB Reports
    • /
    • v.56 no.11
    • /
    • pp.600-605
    • /
    • 2023
  • Intrahepatic cholangiocarcinoma (ICC) is a bile duct cancer and a rare malignant tumor with a poor prognosis owing to the lack of an early diagnosis and resistance to conventional chemotherapy. A combination of gemcitabine and cisplatin is the typically attempted first-line treatment approach. However, the underlying mechanism of resistance to chemotherapy is poorly understood. We addressed this by studying dynamics in the human ICC SCK cell line. Here, we report that the regulation of glucose and glutamine metabolism was a key factor in overcoming cisplatin resistance in SCK cells. RNA sequencing analysis revealed a high enrichment cell cycle-related gene set score in cisplatin-resistant SCK (SCK-R) cells compared to parental SCK (SCK WT) cells. Cell cycle progression correlates with increased nutrient requirement and cancer proliferation or metastasis. Commonly, cancer cells are dependent upon glucose and glutamine availability for survival and proliferation. Indeed, we observed the increased expression of GLUT (glucose transporter), ASCT2 (glutamine transporter), and cancer progression markers in SCK-R cells. Thus, we inhibited enhanced metabolic reprogramming in SCK-R cells through nutrient starvation. SCK-R cells were sensitized to cisplatin, especially under glucose starvation. Glutaminase-1 (GLS1), which is a mitochondrial enzyme involved in tumorigenesis and progression in cancer cells, was upregulated in SCK-R cells. Targeting GLS1 with the GLS1 inhibitor CB-839 (telaglenastat) effectively reduced the expression of cancer progression markers. Taken together, our study results suggest that a combination of GLUT inhibition, which mimics glucose starvation, and GLS1 inhibition could be a therapeutic strategy to increase the chemosensitivity of ICC.

Effect of Glycosaminoglycans on In vitro Fertilizing Ability and In vitro Developmental Potential of Bovine Embryos

  • Kim, Eun Young;Noh, Eun Hyung;Noh, Eun Ji;Park, Min Jee;Park, Hyo Young;Lee, Dong Sun;Riu, Key Zung;Park, Se Pill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.2
    • /
    • pp.178-188
    • /
    • 2013
  • The glycosaminoglycans (GAGs) present in the female reproductive tract promote sperm capacitation. When bovine sperm were exposed to 10 ${\mu}g/ml$ of one of four GAGs (Chondroitin sulfate, CS; Dermatan sulfate, DS; Hyaluronic acid, HA; Heparin, HP) for 5 h, the total motility (TM), straight-line velocity (VSL), and curvilinear velocity (VCL) were higher in the HP- or HA-treated sperm, relative to control and CS- or DS-treated sperm. HP and HA treatments increased the levels of capacitated and acrosome-reacted sperm over time, compared to other treatment groups (p<0.05). In addition, sperm exposed to HP or HA for 1 h before IVF exhibited significantly improved fertilizing ability, as assessed by 2 pronucleus (PN) formation and cleavage rates at d 2. Exposure to these GAGs also enhanced in vitro embryo development rates and embryo quality, and increased the ICM and total blastocyst cell numbers at d 8 after IVF (p<0.05). A real-time PCR analysis showed that the expression levels of pluripotency (Oct 4), cell growth (Glut 5), and anti-apoptosis (Bax inhibitor) genes were significantly higher in embryos derived from HA- or HP-treated sperm than in control or other treatment groups, while pro-apoptotic gene expression (caspase-3) was significantly lower in all GAG treatment groups (p<0.05). These results demonstrated that exposure of bovine sperm to HP or HA positively correlates with in vitro fertilizing ability, in vitro embryo developmental potential, and embryonic gene expression.

Expressional Analysis of Glucose Transporter Isoforms in the Efferent Ductules of Male Sprague Dawley Rat during Postnatal Development

  • Seo, Hee-Jung;Son, Chan-Wok;Lee, Ki-Ho
    • Reproductive and Developmental Biology
    • /
    • v.33 no.4
    • /
    • pp.211-216
    • /
    • 2009
  • A cell frequently utilizes glucose as a fuel of energy and a major substrate of lipid and protein syntheses. A regulation of glucose movement into and out of the cells is precisely controlled by cooperative works of passive and sodium-dependent active processes. At least 13 glucose cotransporter (Slc2a, GLUT) isoforms involve in passive movement of glucose in cells. The efferent ductules (EDs) play in a number of important functions for maintenance of male fertility. In the present study, using real-time PCR analysis, we determined gene expression of five Slc2a isoforms in the EDs. In addition, we compared expression levels of these Slc2a isoforms according to postnatal development ages, 1 week, 2 weeks, 1 month, and 3 months. Results from the current study showed that expression of Slc2a1, Slc2a3, and Slc2a5 mRNAs reached the highest levels at 1 month of age, followed by a transient decrease at 3 months of age. In addition, the level of Slc2a4 mRNA reminded at steady until 1 month of age and was significantly reduced at 3 months of age, whereas the highest level of Slc2a 8 mRNA was detected at 2 weeks of age. Data from the present study indicate a differential expression of various Slc2a isoforms in the ED according to postnatal ages. Thus, it is believed that glucose movement through the epithelial cells in the ED would be regulated by the coordinated manner among Slc2a isoforms expressed at a given age.

Sasa borealis extract exerts an antidiabetic effect via activation of the AMP-activated protein kinase

  • Nam, Jung Soo;Chung, Hee Jin;Jang, Min Kyung;Jung, In Ah;Park, Seong Ha;Cho, Su In;Jung, Myeong Ho
    • Nutrition Research and Practice
    • /
    • v.7 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • Leaf of Sasa borealis, a species of bamboo, has been reported to exhibit anti-hyperglycemic effect. However, its antidiabetic mechanism is not fully understood. In this study, we examined whether an extract of S. borealis activates AMP-activated protein kinase (AMPK) and exerts anti-hyperglycemic effects. Treatment with the S. borealis extract increased insulin signaling and phosphorylation of AMPK and stimulated the expression of its downstream targets, including $PPAR{\alpha}$, ACO, and CPT-1 in C2C12 cells and $PPAR{\alpha}$ in HepG2 cells. However, inhibition of AMPK activation attenuated insulin signaling and prevented the stimulation of AMPK target genes. The S. borealis extract increased glucose uptake in C2C12 cells and suppressed expression of the gluconeogenic gene, PEPCK in HepG2 cells. The extract significantly reduced blood glucose and triglyceride levels in STZ-induced diabetic mice. The extract enhanced AMPK phosphorylation and increased Glut-4 expression in the skeletal muscle of the mice. These findings demonstrated that the S. borealis extract exerts its anti-hyperglycemic effect through activation of AMPK and enhancement of insulin signaling.

The Effects of Galgunhwanggumhwangryun-tang on Glucose and Energy Metabolism in C2C12 Myotubes (C2C12 골격근 세포에서 갈근황금황련탕의 당 대사 및 에너지 조절 효과)

  • Jihong Oh;Song-Yi Han;Soo Kyoung Lim;Hojun Kim
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.22 no.2
    • /
    • pp.93-101
    • /
    • 2022
  • Objectives: This study aimed to observe the anti-diabetic effect and underlying mechanisms of Galgunhwanggumhwangryun-tang (GHH; Gegen-Qinlian-decoction) in the C2C12 myotubes. Methods: GHH (1.0 mg/ml) or metformin (0.75 mM) or insulin (100 nM) were treated in C2C12 myotubes after 4 days differentiation. The glucose uptake was assessed by 2-[N-(7-160 nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose uptake by C2C12 cells. The expression of adenosine monophosphate-activated protein kinase (AMPK) and phosphorylation AMPK (pAMPK) were measured by western blot. We also evaluated gene expression of glucose transporter type 4 (Slc2a4, formerly known as GLUT4), glucokinase (Gk), carnitine palmitoyltransferase IA (Cpt1a), nuclear respiratory factors 1 (Nrf1), mitochondrial transcription factor A (Tfam), and peroxisome proliferator-activated receptor γ coactivator 1α (Ppargc1a) by quantitative real-time polymerase chain reaction. Results: GHH promoted glucose uptake in C2C12 myotubes. The expression of AMPK protein, which plays an essential role in glucose metabolism, was increased by treatment with GHH. GHH treatment tended to increase gene expression of Slc2a4, Gk, and Nrf1 but was not statistically significant. However, GHH significantly improved Tfam and Ppargc1a gene expression in C2C12 myotubes. Conclusions: In summary, GHH treatment promoted glucose uptake in C2C12 myotubes. We suggest that these effects are associated with increased gene expression involved in mitochondrial biosynthesis and oxidative phosphorylation, such as Tfam and Ppargc1a, and increased expression of AMPK protein.

Fermented Ginseng Attenuates Hepatic Lipid Accumulation and Hyperglycemia through AMPK Activation

  • Kim, Do-Yeon;Park, Jong-Seok;Yuan, Hai-Dan;Chung, Sung-Hyun
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.172-178
    • /
    • 2009
  • Fermented ginseng (FG) is an ethanol extract of ginseng radix processed with $\beta$-galactosidase. It was hypothesized that FG may exert anti-hyperlipidemic and anti-diabetic activities through modulating AMP-activated protein kinase (AMPK) in HepG2 human hepatoma cells. In this study, we showed that AMPK phosphorylation was stimulated by FG. These effects were abolished by pretreatment with an AMPK inhibitor, compound C. In addition, FG regulated the expression of genes associated with lipogenesis and lipolysis, thus causing suppression of hepatic triglyceride accumulation. In vivo study using db/db mice, FG reduced fasting plasma glucose, HbAlc, and insulin resistance index, when compared to diabetic control. FG also increased the phospho-AMPK and glucose transporter 4 (GLUT4) expressions in liver and skeletal muscle, respectively. In liver, expressions of lipogenic gene were decreased whereas expressions of lipolytic genes were induced, when compared to diabetic control. Taken together, we may suggest that FG ameliorates hyperglycemia and hyperlipidemia through activation of AMPK and could be developed as a health functional food or therapeutic agent for type 2 diabetic patients.

Expression of Sodium-Iodide Symporter Depending on Mutational Status and Lymphocytic Thyroiditis in Papillary Thyroid Carcinoma

  • Song, Young Shin;Park, Young Joo
    • International journal of thyroidology
    • /
    • v.11 no.2
    • /
    • pp.152-159
    • /
    • 2018
  • Background and Objectives: Sodium-iodine symporter (NIS) is a marker for the degree of differentiation in thyroid cancer. The genetic factors or microenvironment surrounding tumors can affect transcription of NIS. In this study, we investigated the NIS mRNA expression according to mutational status and coexistent lymphocytic thyroiditis in papillary thyroid cancer (PTC). Materials and Methods: The RNA expression levels of NIS in the samples from database of The Caner Genome Atlas (TCGA; n=494) and our institute (n=125) were analyzed. Results: The PTCs with the $BRAF^{V600E}$ mutation and the coexistence of $BRAF^{V600E}$ and TERT promoter mutations showed significantly lower expression of NIS (p<0.001, respectively), and those with BRAF-like molecular subtype also had reduced expression of NIS (p<0.001). NIS expression showed a positive correlation with thyroid differentiation score (r=0.593, p<0.001) and negative correlations with expressions of genes involved in ERK signaling (r=-0.164, p<0.001) and GLUT-1 gene (r=-0.204, p<0.001). The PTCs with lymphocytic thyroiditis showed significantly higher NIS expression (p=0.013), regardless of mutational status. Conclusion: The NIS expression was reduced by the $BRAF^{V600E}$ mutation and MAPK/ERK pathway activation, but restored by the presence of lymphocytic thyroiditis.

Glycolytic and oxidative muscles under acute glucose supplementation differ in their metabolic responses to fatty acyl-CoA synthetase gene suppression

  • Jung, Yun Hee;Bu, So Young
    • Journal of Nutrition and Health
    • /
    • v.55 no.1
    • /
    • pp.70-84
    • /
    • 2022
  • Purpose: Skeletal muscles display significant heterogeneity in metabolic responses, owing to the composition of metabolically distinct fiber types. Recently, numerous studies have reported that in skeletal muscles, suppression of genes related to fatty acid channeling alters the triacylglycerol (TAG) synthesis and switches the energy substrates. However, such responses may differ, depending on the type of muscle fiber. Hence, we conducted in vitro and animal studies to compare the metabolic responses of different types of skeletal muscle fibers to the deficiency of fatty acyl-CoA synthetase (Acsl)6, one of the main fatty acid-activating enzymes. Methods: Differentiated skeletal myotubes were transfected with selected Acsl6 short interfering RNA (siRNA), and C57BL/6J mice were subjected to siRNA to induce Acsl6 deficiency. TAG accumulation and expression levels of insulin signaling proteins in response to acute glucose supplementation were measured in immortalized cell-based skeletal myotubes, oxidative muscles (OM), and glycolytic muscles (GM) derived from the animals. Results: Under conditions of high glucose supplementation, suppression of the Acsl6 gene resulted in decreased TAG and glycogen synthesis in the C2C12 skeletal myotubes. The expression of Glut4, a glucose transporter, was similarly downregulated. In the animal study, the level of TAG accumulation in OM was higher than levels determined in GM. However, a similar decrease in TAG accumulation was obtained in the two muscle types in response to Acsl6 suppression. Moreover, Acsl6 suppression enhanced the phosphorylation of insulin signaling proteins (Foxo-1, mTORc-1) only in GM, while no such changes were observed in OM. In addition, the induction ratio of phosphorylated proteins in response to glucose or Acsl6 suppression was significantly higher in GM than in OM. Conclusion: The results of this study demonstrate that Acsl6 differentially regulates the energy metabolism of skeletal muscles in response to glucose supplementation, thereby indicating that the fiber type or fiber composition of mixed muscles may skew the results of metabolic studies.

Anti-Obesity Effect of Ethyl Acetate Extracts from Agrimonia pilosa Ledeb. in 3T3-L1 Preadipocytes (3T3-L1 지방전구세포에서 용아초 에틸아세테이트 추출물의 항비만 효과)

  • Lee, Jung-A;Ahn, Eun-Kyung;Hong, Seong-Su;Oh, Joa-Sub
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.2
    • /
    • pp.161-167
    • /
    • 2012
  • To evaluate the anti-obesity effect of Agrimonia pilosa L., this study investigated that ethyl acetate extract from A. pilosa L. (EAAP) suppresses lipid accumulation and inhibits expression of adipogenic marker genes, such as peroxisome proliferator activated receptor ${\gamma}$ (PPAR${\gamma}$), CCAAT-enhancer-binding protein ${\alpha}$ (C/EBP${\alpha}$), glucose transporter 4 (GLUT4), and adiponectin in 3T3-L1 preadipocytes. We demonstrated that EAAP inhibited adipocyte differentiation and expression of PPAR${\gamma}$ and C/EBP${\alpha}$ mRNA levels in a dose-dependent manner. In addition, EAAP reduced the PPAR${\gamma}$ transcriptional activity stimulated by rosiglitazone in HEK 293T cells and decreased the expression of GLUT4 and adiponectin in 3T3-L1 cells. These results suggest that EAAP inhibits preadipocyte differentiation and adipogenesis by blocking of PPAR${\gamma}$ and C/EBP${\alpha}$ gene expression in 3T3-L1 cells.