• Title/Summary/Keyword: GLUT

Search Result 233, Processing Time 0.035 seconds

Effect of Rhodiola Sachalinensis Administration and Endurance Exercise on Insulin Sensitivity and Expression of Proteins Related with Glucose Transport in Skeletal Muscle of Obese Bucker Rat (홍경천 섭취와 운동수행이 비만 쥐의 인슐린 민감도와 골격근내 당수송 관련 단백질 발현에 미치는 영향)

  • Oh Jae-Keun;Shin Young-Oh;Jung Hee-Jung;Lee Jung-Eun
    • Journal of Nutrition and Health
    • /
    • v.39 no.4
    • /
    • pp.323-330
    • /
    • 2006
  • Peripheral insulin resistance in obese/type II diabetes animals results from an impairment of insulin-stimulated glucose uptake into skeletal muscle. Insulin stimulate the translocation of GLUT4 from intracellular location to the plasma membrane. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) is implicated in mediation of fusion of GLUT4-containing vesicle with the plasma membrane. Present study investigated regulatory effects of Rhodiola sachalinensis administration and exercise training on the expression of GLUT4 protein and SNAREs protein in skeletal muscles of obese Zucker rats. Experimental animals were randomly assigned into one of five groups ; lean control(LN), obese control(OB), exercise-treated(EXE), Rhodiola sachalinensis-treated(Rho), combine of Rho & EXE (Rho-EXE). All animals of exercise training (EXE, Rho-EXE) performed treadmill running for 8 weeks, and animals of Rho groups (Rho, Rho-EXE) were dosed daily by gastric gavage during the same period. After experiment, blood were taken for analyses of glucose, insulin, and lipids levels. Mitochondrial oxidative enzyme (citrate synthase, CS ; $\beta$-hydroxyacyl-CoA dehydrogenase, $\beta$-HAD) activity were analysed. Skeletal muscles were dissected out for analyses of proteins (GLUT4, VAMP2, syntaxin4, SNAP23). Results are as follows. Exercise and/or Rhodiola sachalinensis administration significantly reduced body weight and improved blood lipids (TG, FFA), and increased insulin sensitivity. Endurance exercise significantly increased the activity of mitochondrial enzymes and the expression of GLUT4 protein, however, administration of Rhodiola sachalinensis did not affect them. The effect of exercise and/or Rhodiola sachalinensis administration on the expression of SNARE proteins was unclear. Our study suggested that improvement insulin sensitivity by exercise and/or Rhodiola sachalinensis administration in obese Zucker rats is independent of expression of SNARE proteins.

Immunohistochemical Evaluation of Glucose Transporter Type 1 in Epithelial Dysplasia and Oral Squamous Cell Carcinoma

  • Pereira, Karuza Maria Alves;Feitosa, Sthefane Gomes;Lima, Ana Thayssa Tomaz;Luna, Ealber Carvalho Macedo;Cavalcante, Roberta Barroso;Lima, Kenio Costa de;Chaves, Filipe Nobre;Costa, Fabio Wildson Gurgel
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.147-151
    • /
    • 2016
  • Oral squamous cell carcinoma (OSCC) is the most common malignancy of the oral cavity and some of these have been documented in association or preceded by oral epithelial dysplasia (OED). Aggressive cancers with fast growth have demonstrated overexpression of some glucose transporters (GLUTs). Thus, the aim of this study was to analyze the immunohistochemical expression of the glucose transporter, GLUT-1, in OEDs and OSCCs, seeking to better elucidate the biological behavior of neoplasias. Fifteen cases were selected this research of both lesions. Five areas were analyzed from each case by counting the percentage of positive cells at 400x magnification. Immunoreactivity of GLUT-1 was observed in 100% of the samples ranging from 54.2% to 86.2% for the OSCC and 73.9% to 97.4% for the OED. Statistical test revealed that there was greater overexpression of GLUT-1 in OED than the OSCC (p=0.01). It is believed the high expression of GLUT-1 may reflect the involvement of GLUT-1 in early stages of oral carcinogenesis.

Effects of Mori Folium Ethanol Soluble Fraction on mRNA Expression of glucose transporters, acetyl-CoA carboxylase and leptin (상엽 에탄올가용분획의 글루코스전달체, acetyl-CoA 카복시라제 및 렙틴 mRNA 발현에 미치는 영향)

  • Ryu, Jeong-Wha;Yook, Chang-Soo;Chung, Sung-Hyun
    • YAKHAK HOEJI
    • /
    • v.42 no.6
    • /
    • pp.589-597
    • /
    • 1998
  • Effects of Mori Folium Ethanol Soluble Fraction (MFESF) on mRNA expression of glucose transporters, acetyl-CoA carboxylase (ACC) and leptin were examined in db/db mice. 500 and 1000mg/kg dose for MFESF (designated by SY 500 and SY 1000, respectively) and 5mg/kg dose for acarbose were administered for 6 weeks. Quantitations of glucose transporters (GLUT-2 and GLUT-4), ACC and leptin mRNA were performed by RT-PCR and in vitro transcription with co-amplification of rat ${\beta}$-actin gene as an internal standard. Muscular GLUT-4 mRNA expression in MFESF-treated groups were increased dose dependently. On the other hand, MFESF caused the GLLT-4 and leptin mRNA expressions in adipose tissue to decrease dose dependently, which means that triglyceride synthesis in adipocytes might be decreased and consequently signals adipocytes to inhibit the synthesis and release of leptin. Hepatic ACC mRNA expression in MFESF-treated groups was also decreased. and this may result in lowering of serum triiglyceride level. In contrast, liver GLUT-2 mRNA expressions in MFESF-treated and acarbose groups were increased. Higher rate of glucose uptake into hepatocytes is known to inhibit a phosphoenolpyruvate carboxykinase (PEPCK)-catalyzed reaction, which is a rate-limiting step in gluconeogenesis.

  • PDF

The Effects of Endurance Training Combined with Rosiglitazone on The Expression of PPARs, PGC-1α, GLUT-4 and p-AMPK-α2 in The Skeletal Muscle of Diabetic Induced-Rats (지구력 트레이닝 및 Rosiglitazone 병행 처치가 당뇨병이 유발된 쥐의 골격근에서 PPARs, PGC-1α, GLUT-4 및 p-AMPK-α2의 발현에 미치는 영향)

  • Ha, Tae-Geun;Kim, Jae-Cheol
    • Korean Journal of Exercise Nutrition
    • /
    • v.13 no.2
    • /
    • pp.131-140
    • /
    • 2009
  • The aim of this study was to investigate the expression of PPAR-α, -β/δ, -γ, PGC-1α, GLUT-4 and p-AMPK-α2 protein in the skeletal muscle of diabetic induced-rats by endurance training combined with rosiglitazone. The expression of PPAR-α, -β/δ, -γ, PGC-1α, GLUT-4 and p-AMPK-α2 protein in red and white gastrocnemius by western blotting. The body weight was higher in diabetic induced-rats compared to the normal rats and after the treatment of exercise combined with rosiglitazone was significantly reduced in the all group. The levels of blood glucose was higher in diabetic induced-rats compared to the normal rats and after the treatment of exercise combined with rosiglitazone was significantly reduced in the all group. The expression of PPAR-α, -γ, PGC-1α in skeletal muscle of diabetic induced-rats were increased all groups and increased significantly in the group with exercise combined with rosiglitazone. The expression of GLUT-4 and p-AMPK-α2 protein in the skeletal muscle of diabetic induced-rats were increased all groups and increased significantly in the group with exercise combined with rosiglitazoneI. These results suggest that exercise training and rosiglitazone may act as complementary therapies for the treatment of insulin rasistance.

Allium Hookeri Extract Enhances Glucose Uptake through GLUT4 Up-regulation in 3T3-L1 Cells (GLUT4 상향조절을 통한 Allium hookeri 추출물의 3T3-L1 세포 내 포도당 흡수 증진 효과)

  • Kang, Young Eun;Choi, Kyeong-Mi;Park, Eunjin;Jung, Won-Beom;Jeong, Heejin;Yoo, Hwan-Soo
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.289-294
    • /
    • 2017
  • Diabetes mellitus is associated with insulin resistance, which leads to down-regulation of insulin signaling and the decreased glucose uptake. Adipocytes are sensitive to insulin, and closely implicated in insulin resistance and diabetes. Insulin stimulates differentiation of preadipocytes to adipocytes, and increases glucose transport. Allium species have been used as traditional medicine and health-promoting foods. Allium hookeri (A. hookeri) is reported to improve the pancreatic ${\beta}-cell$ damage and exhibit pancreatic anti-inflammatory activity in streptozotocin-induced diabetic rats. We investigated whether A. hookeri extract (AHE) may stimulate glucose uptake in adipocytes through increasing insulin sensitivity. AHE enhanced fat accumulation, a differentiation biomarker, under the partial induction of differentiation by insulin. $PPAR{\gamma}$, a transcription factor highly expressed in adipocytes, promotes adipocyte differentiation and insulin sensitivity. AHE increased the differentiation of preadipocytes through up-regulation of $PPAR{\gamma}$. The activation of $PPAR{\gamma}$ increases the GLUT4 expression during adipocyte differentiation. GLUT4 is responsible for glucose uptake into the adipocytes. AHE increased the expression of GLUT4 in adipocytes, and subsequently enhanced the insulin-stimulated glucose uptake. These results suggest that AHE promotes adipocyte differentiation through activation of $PPAR{\gamma}$, and leads to enhance glucose uptake in adipocytes along with GLUT4 up-regulation. Thus, AHE may be effective for the insulin-sensitizing and anti-diabetic activities.

Study of the mechanisms underlying increased glucose absorption in Smilax china L. leaf extract-treated HepG2 cells (청미래덩굴 잎 물추출물이 처리된 HepG2 세포에서의 포도당흡수기전 연구)

  • Kang, Yun Hwan;Kim, Dae Jung;Kim, Kyoung Kon;Lee, Sung Mee;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.47 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • Purpose: Previous studies have shown that treatment with Smilax china L. leaf extract (SCLE) produces antidiabetic effects due to ${\alpha}$-glucosidase inhibition. In this study, we examined the mechanism underlying these antidiabetic effects by examining glucose uptake in HepG2 cells cultured with SCLE. Methods: Glucose uptake and glucokinase activity were examined using an assay kit. Expression of glucose transporter (GLUT)-2, GLUT-4, and HNF-$1{\alpha}$ was measured by RT-PCR or western blot. Results: Treatment with SCLE resulted in enhanced glucose uptake in HepG2 cells, and this effect was especially pronounced when cells were cultured in an insulin-free medium. SCLE induced an increase in expression of GLUT-2 but not GLUT-4. The increase in the levels of HNF-$1{\alpha}$, a GLUT-2 transcription factor, in total protein extract and nuclear fraction suggest that the effects of SCLE may occur at the level of GLUT-2 transcription. In addition, by measuring the change in glucokinase activity following SCLE treatment, we confirmed that SCLE stimulates glucose utilization by direct activation of this enzyme. Conclusion: These results demonstrate that the potential antidiabetic activity of SCLE is due at least in part to stimulation of glucose uptake and an increase in glucokinase activity, and that SCLE-stimulated glucose uptake is mediated through enhancement of GLUT-2 expression by inducing expression of its transcription factor, HNF-$1{\alpha}$.

Fucoidan Stimulates Glucose Uptake via the PI3K/AMPK Pathway and Increases Insulin Sensitivity in 3T3-L1 Adipocytes (후코이단의 3T3-L1 지방세포에서 PI3K/AMPK 경로를 통한 포도당 흡수 촉진 및 인슐린 민감성 증진 효과)

  • Lee, Ji Hee;Park, Jae Eun;Han, Ji Sook
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Brown seaweeds have been shown to decrease blood glucose levels and improve insulin sensitivity previously. In this study, we investigated the effect of fucoidan, a complex polysaccharide derived from brown seaweeds, on glucose uptake to improve insulin resistance, and examined its mechanism of action in 3T3-L1 adipocytes. We observed that fucoidan significantly increased glucose uptake and it was related to an increased expression of plasma membrane-glucose transporter 4 (PM-GLUT4) in 3T3-L1 adipocytes. Fucoidan treatment increased the activation of phosphatidylinositol-3-kinase (PI3K) and the phosphorylation of insulin receptor substrate 1 (IRS1tyr) compared with that of the control cells. Fucoidan also promoted the phosphorylation of Akt and protein kinase C (PKC)-λ/ζ compared to that of the control cells. Moreover, fucoidan significantly upregulated acetyl-CoA-carboxylase (ACC) and adenosine monophosphate - activated protein kinase (AMPK) phosphorylation. As a result, translocation of GLUT4 was significantly enhanced in 3T3-L1 adipocytes, which significantly promoted glucose uptake via the PI3K/AMPK pathways. The elevation of glucose uptake by fucoidan was blocked by inhibitor of PI3K and inhibitor of AMPK in 3T3-L1 adipocytes. These findings indicate that fucoidan might ameliorate glucose uptake through GLUT4 translocation to the plasma membrane by activating the PI3K/Akt and AMPK pathways in 3T3-L1 adipocytes. Fucoidan is thought to be of high material value to diabetes treatments and functional foods.

A Study on the Effect of Sangbaegpitang & Supungsungiwhan on the Glucose Metabolism of db/db Mice (상백피탕(桑白皮湯)과 수풍순기환(搜風順氣丸)이 db/db Mice의 당대사(糖代謝)에 미치는 영향(影響))

  • Lee, Sung-Hyun;Ahn, Se-Young;Doo, Ho-Kyung
    • The Journal of Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.108-120
    • /
    • 1999
  • In this study, body weight levels of glucose, insulin and triglyceride in blood and glucosidase activity of the small intestine were investigated to determine the effect of Sangbaegpitang and Supungsungiwhan on the glucose metabolism of db/db mice. The GLUT4 mRNA of muscle tissue and the Acetyl CoA Carboxylase and the activation rate of GLUT2 mRNA of liver tissue were measured by the reverse transcription-polymerase chain reaction method and by the vitro transcription. The results were obtained as follows: 1. In the Sangbaegpitang administration group, (1) The level of triglyceride was decreased significantly and the glucosidase activity of the small intestine was inhibited remarkably, (2) The amounts of the GLUT4 mRNA in muscle tissue and Acetyl CoA Carboxylase mRNA in liver tissue were increased significantly. (3) Though glucose level in both fasting and non-fasting, were decreased and the insulin level in blood was increased, the results showed no statistical significance. 2. In the Supungsungiwhan administration group, (1) The levels of glucose and triglyceride were decreased significantly in the blood of non-fasting animals. (2) The glucosidase activity of small intestine was inhibited markedly and the amounts of GLUT4 mRNA of muscle tissue and GLUT2 mRNA of liver tissue were increased significantly. (3) The glucose levels in the fasting group were reduced, while insulin level was increased but showed no statistical significance, Based on the above results, our conclusions are as follows: Sangbaegpitang & Supungsungiwhan are thought to be capable of inhibiting the activity glucosidase, the enzyme which influences carbohydrate metabolism in the small intestine of db/db mice(the experimental diabetic model) and delaying the absorption of carbohydrate, thus proving effective on inhibiting the increase of non-fasting glucose level effectively. Futhermore Sangbaegpitang and Supungsungiwhan are though: to be capable of preventing the composition of free fatty acids by restoring the production of GLUT4 mRNA of muscle tissues and GLUT2 mRNA of liver tissues. Those results suggests that above prescriptions can be applied to non-insulin dependent diabetes mellitus in order to improve insulin resistance.

  • PDF

Correlation between glucose transporter type-1 expression and $^{18}F$-FDG uptake on PET in oral cancer

  • Kim, Chul-Hwan;Kim, Moon-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.4
    • /
    • pp.212-220
    • /
    • 2012
  • Objectives: Fluorine-18 fluorodeoxyglucose positron emission tomography ($^{18}F$-FDG PET) is a non-invasive diagnostic tool for many human cancers wherein glucose uptake transporter-1 (GLUT-1) acts as a main transporter in the uptake of $^{18}F$-FDG in cancer cells. Increased expression of glucose transporter-1 has been reported in many human cancers. In this study, we investigated the correlation between $^{18}F$-FDG accumulation and expression of GLUT-1 in oral cancer. Materials and Methods: We evaluated 42 patients diagnosed with oral squamous cell carcinoma (OSCC) and malignant salivary gland tumor as confirmed by histology. 42 patients underwent pre-operative $^{18}F$-FDG PET, with the maximum standardized uptake value ($SUV_{max}$) measured in each case. Immunohistochemical staining was done for each histological specimen, and results were evaluated post-operatively according to the percentage (%) of positive area, intensity, and staining score. Results: For OSCC, $SUV_{max}$ significantly increased as T stage of tumor classification increased. For malignant salivary gland tumor, $SUV_{max}$ significantly increased as T stage of tumor classification increased. For OSCC, GLUT-1 was expressed in all 36 cases. GLUT-1 staining score (GSS) increased as T stage of tumor classification increased, with the difference statistically significant. For malignant salivary gland tumor, GLUT-1 expression was observed in all 6 cases; average GSS was significantly higher in patients with cervical lymph node metastasis than that in patients without cervical lymph node metastasis. Average GSS was higher in OSCC ($11.11{\pm}1.75$) than in malignant salivary gland tumor ($5.33{\pm}3.50$). No statistically significant correlation between GSS and $SUV_{max}$ was observed in OSCC or in malignant salivary gland tumor. Conclusion: We found no statistically significant correlation between GSS and $SUV_{max}$ in OSCC or in malignant salivary gland tumor. Studies on the various uses of GLUT during $^{18}F$-FDG uptake and SUV and GLUT as tumor prognosis factor need to be conducted through further investigation with large samples.