• Title/Summary/Keyword: GLO

Search Result 146, Processing Time 0.024 seconds

Possibilities for Improvement in Long-term Predictions of the Operational Climate Prediction System (GloSea6) for Spring by including Atmospheric Chemistry-Aerosol Interactions over East Asia (대기화학-에어로졸 연동에 따른 기후예측시스템(GloSea6)의 동아시아 봄철 예측 성능 향상 가능성)

  • Hyunggyu Song;Daeok Youn;Johan Lee;Beomcheol Shin
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.19-36
    • /
    • 2024
  • The global seasonal forecasting system version 6 (GloSea6) operated by the Korea Meteorological Administration for 1- and 3-month prediction products does not include complex atmospheric chemistry-aerosol physical processes (UKCA). In this study, low-resolution GloSea6 and GloSea6 coupled with UKCA (GloSea6-UKCA) were installed in a CentOS-based Linux cluster system, and preliminary prediction results for the spring of 2000 were examined. Low-resolution versions of GloSea6 and GloSea6-UKCA are highly needed to examine the effects of atmospheric chemistry-aerosol owing to the huge computational demand of the current high resolution GloSea6. The spatial distributions of the surface temperature and daily precipitation for April 2000 (obtained from the two model runs for the next 75 days, starting from March 1, 2000, 00Z) were compared with the ERA5 reanalysis data. The GloSea6-UKCA results were more similar to the ERA5 reanalysis data than the GloSea6 results. The surface air temperature and daily precipitation prediction results of GloSea6-UKCA for spring, particularly over East Asia, were improved by the inclusion of UKCA. Furthermore, compared with GloSea6, GloSea6-UKCA simulated improved temporal variations in the temperature and precipitation intensity during the model integration period that were more similar to the reanalysis data. This indicates that the coupling of atmospheric chemistry-aerosol processes in GloSea6 is crucial for improving the spring predictions over East Asia.

Seasonal Forecasting of Tropical Storms using GloSea5 Hindcast (기후예측시스템(GloSea5) 열대성저기압 계절예측 특성)

  • Lee, Sang-Min;Lee, Jo-Han;Ko, A-Reum;Hyun, Yu-Kyung;Kim, YoonJae
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.209-220
    • /
    • 2020
  • Seasonal predictability and variability of tropical storms (TCs) simulated in the Global Seasonal Forecast System version 5 (GloSea5) of the Korea Meteorological Administration (KMA) is assessed in Northern Hemisphere in 1996~2009. In the KMA, the GloSea5-Global Atmosphere version 3.0 (GloSea5-GA3) that was previously operated was switched to the GloSea5-Global Coupled version 2.0 (GloSea5-GC2) with data assimilation system since May 2016. In this study, frequency, track, duration, and strength of the TCs in the North Indian Ocean, Western Pacific, Eastern Pacific, and North Atlantic regions derived from the GloSea5-GC2 and GloSea5-GA3 are examined against the best track data during the research period. In general, the GloSea5 shows a good skill for the prediction of seasonally averaged number of the TCs in the Eastern and Western Pacific regions, but underestimation of those in the North Atlantic region. Both the GloSea5-GA3 and GC2 are not able to predict the recurvature of the TCs in the North Western Pacific Ocean (NWPO), which implies that there is no skill for the prediction of landfalls in the Korean peninsula. The GloSea5-GC2 has higher skills for predictability and variability of the TCs than the GloSea5-GA3, although continuous improvements in the operational system for seasonal forecast are still necessary to simulate TCs more realistically in the future.

The KMA Global Seasonal Forecasting System (GloSea6) - Part 1: Operational System and Improvements (기상청 기후예측시스템(GloSea6) - Part 1: 운영 체계 및 개선 사항)

  • Kim, Hyeri;Lee, Johan;Hyun, Yu-Kyung;Hwang, Seung-On
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.341-359
    • /
    • 2021
  • This technical note introduces the new Korea Meteorological Administration (KMA) Global Seasonal forecasting system version 6 (GloSea6) to provide a reference for future scientific works on GloSea6. We describe the main areas of progress and improvements to the current GloSea5 in the scientific and technical aspects of all the GloSea6 components - atmosphere, land, ocean, and sea-ice models. Also, the operational architectures of GloSea6 installed on the new KMA supercomputer are presented. It includes (1) pre-processes for atmospheric and ocean initial conditions with the quasi-real-time land surface initialization system, (2) the configurations for model runs to produce sets of forecasts and hindcasts, (3) the ensemble statistical prediction system, and (4) the verification system. The changes of operational frameworks and computing systems are also reported, including Rose/Cylc - a new framework equipped with suite configurations and workflows for operationally managing and running Glosea6. In addition, we conduct the first-ever run with GloSea6 and evaluate the potential of GloSea6 compared to GloSea5 in terms of verification against reanalysis and observations, using a one-month case of June 2020. The GloSea6 yields improvements in model performance for some variables in some regions; for example, the root mean squared error of 500 hPa geopotential height over the tropics is reduced by about 52%. These experimental results show that GloSea6 is a promising system for improved seasonal forecasts.

A Study of the Application of Machine Learning Methods in the Low-GloSea6 Weather Prediction Solution (Low-GloSea6 기상 예측 소프트웨어의 머신러닝 기법 적용 연구)

  • Hye-Sung Park;Ye-Rin, Cho;Dae-Yeong Shin;Eun-Ok Yun;Sung-Wook Chung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.307-314
    • /
    • 2023
  • As supercomputing and hardware technology advances, climate prediction models are improving. The Korean Meteorological Administration adopted GloSea5 from the UK Met Office and now operates an updated GloSea6 tailored to Korean weather. Universities and research institutions use Low-GloSea6 on smaller servers, improving accessibility and research efficiency. In this paper, profiling Low-GloSea6 on smaller servers identified the tri_sor_dp_dp subroutine in the tri_sor.F90 atmospheric model as a CPU-intensive hotspot. Applying linear regression, a type of machine learning, to this function showed promise. After removing outliers, the linear regression model achieved an RMSE of 2.7665e-08 and an MAE of 1.4958e-08, outperforming Lasso and ElasticNet regression methods. This suggests the potential for machine learning in optimizing identified hotspots during Low-GloSea6 execution.

The Seasonal Forecast Characteristics of Tropical Cyclones from the KMA's Global Seasonal Forecasting System (GloSea6-GC3.2) (기상청 기후예측시스템(GloSea6-GC3.2)의 열대저기압 계절 예측 특성)

  • Sang-Min Lee;Yu-Kyung Hyun;Beomcheol Shin;Heesook Ji;Johan Lee;Seung-On Hwang;Kyung-On Boo
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.97-106
    • /
    • 2024
  • The seasonal forecast skill of tropical cyclones (TCs) in the Northern Hemisphere from the Korea Meteorological Administration (KMA) Global Seasonal Forecast System version 6 (GloSea6) hindcast has been verified for the period 1993 to 2016. The operational climate prediction system at KMA was upgraded from GloSea5 to GloSea6 in 2022, therefore further validation was warranted for the seasonal predictability and variability of this new system for TC forecasts. In this study, we examine the frequency, track density, duration, and strength of TCs in the North Indian Ocean, the western North Pacific, the eastern North Pacific, and the North Atlantic against the best track data. This methodology follows a previous study covering the period 1996 to 2009 published in 2020. GloSea6 indicates a higher frequency of TC generation compared to observations in the western North Pacific and the eastern North Pacific, suggesting the possibility of more TC generation than GloSea5. Additionally, GloSea6 exhibits better interannual variability of TC frequency, which shows relatively good correlation with observations in the North Atlantic and the western North Pacific. Regarding TC intensity, GloSea6 still underestimates the minimum surface pressures and maximum wind speeds from TCs, as is common among most climate models due to lower horizontal resolutions. However, GloSea6 is likely capable of simulating slightly stronger TCs than GloSea5, partly attributed to more frequent 6-hourly outputs compared to the previous daily outputs.

Cloning and Characterization of a Glyoxalase I Gene from the Osmotolerant Yeast Candida magnoliae

  • Park, Eun-Hee;Lee, Dae-Hee;Seo, Jin-Ho;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.277-283
    • /
    • 2011
  • Glyoxalase I catalyzes the conversion of methylglyoxal to S-D-lactoylglutathione in the presence of glutathione. The structural gene of glyoxalase I (GLO1) was cloned from an osmotolerant yeast, Candida magnoliae, which produces a functional sweetener, erythritol, from sucrose. DNA sequence analysis revealed that the uninterrupted open reading frame (ORF) of C. magnoliae GLO1 (CmGLO1) spans 945 bp, corresponding to 315 amino acid residues, and shares 45.2% amino acid sequence identity to Saccharomyces cerevisiae Glo1. The cloned ORF in a multicopy constitutive expression plasmid complemented the glo1 mutation of S. cerevisiae, confirming that it encodes Glo1 in C. magnoliae. The responses of CmGLO1 to environmental stresses were different from those of S. cerevisiae, which only responds to osmotic stress. An enzyme activity assay and reverse transcription polymerase chain reaction revealed that the expression of CmGLO1 is induced by stress inducers such as methylglyoxal, $H_2O_2$, KCl, and NaCl. The GenBank Accession No. for CmGLO1 is HM000001.

Data processing system and spatial-temporal reproducibility assessment of GloSea5 model (GloSea5 모델의 자료처리 시스템 구축 및 시·공간적 재현성평가)

  • Moon, Soojin;Han, Soohee;Choi, Kwangsoon;Song, Junghyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.761-771
    • /
    • 2016
  • The GloSea5 (Global Seasonal forecasting system version 5) is provided and operated by the KMA (Korea Meteorological Administration). GloSea5 provides Forecast (FCST) and Hindcast (HCST) data and its horizontal resolution is about 60km ($0.83^{\circ}{\times}0.56^{\circ}$) in the mid-latitudes. In order to use this data in watershed-scale water management, GloSea5 needs spatial-temporal downscaling. As such, statistical downscaling was used to correct for systematic biases of variables and to improve data reliability. HCST data is provided in ensemble format, and the highest statistical correlation ($R^2=0.60$, RMSE = 88.92, NSE = 0.57) of ensemble precipitation was reported for the Yongdam Dam watershed on the #6 grid. Additionally, the original GloSea5 (600.1 mm) showed the greatest difference (-26.5%) compared to observations (816.1 mm) during the summer flood season. However, downscaled GloSea5 was shown to have only a -3.1% error rate. Most of the underestimated results corresponded to precipitation levels during the flood season and the downscaled GloSea5 showed important results of restoration in precipitation levels. Per the analysis results of spatial autocorrelation using seasonal Moran's I, the spatial distribution was shown to be statistically significant. These results can improve the uncertainty of original GloSea5 and substantiate its spatial-temporal accuracy and validity. The spatial-temporal reproducibility assessment will play a very important role as basic data for watershed-scale water management.

Prediction Skill for East Asian Summer Monsoon Indices in a KMA Global Seasonal Forecasting System (GloSea5) (기상청 기후예측시스템(GloSea5)의 여름철 동아시아 몬순 지수 예측 성능 평가)

  • Lee, So-Jeong;Hyun, Yu-Kyung;Lee, Sang-Min;Hwang, Seung-On;Lee, Johan;Boo, Kyung-On
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.293-309
    • /
    • 2020
  • There are lots of indices that define the intensity of East Asian summer monsoon (EASM) in climate systems. This paper assesses the prediction skill for EASM indices in a Global Seasonal Forecasting System (GloSea5) that is currently operating at KMA. Total 5 different types of EASM indices (WNPMI, EAMI, WYI, GUOI, and SAHI) are selected to investigate how well GloSea5 reproduces them using hindcasts with 12 ensemble members with 1~3 lead months. Each index from GloSea5 is compared to that from ERA-Interim. Hindcast results for the period 1991~2010 show the highest prediction skill for WNPMI which is defined as the difference between the zonal winds at 850 hPa over East China Sea and South China Sea. WYI, defined as the difference between the zonal winds of upper and lower level over the Indian Ocean far from East Asia, is comparatively well captured by GloSea5. Though the prediction skill for EAMI which is defined by using meridional winds over areas of East Asia and Korea directly affected by EASM is comparatively low, it seems that EAMI is useful for predicting the variability of precipitation by EASM over East Asia. The regressed atmospheric fields with EASM index and the correlation with precipitation also show that GloSea5 best predicts the synoptic environment of East Asia for WNPMI among 5 EASM indices. Note that the result in this study is limited to interpret only for GloSea5 since the prediction skill for EASM index depends greatly on climate forecast model systems.

Derivation of relationship between cross-site correlation among flows and among estimators of L-moments for GEV and GLO distribution (GEV와 GLO 분포의 유출량 교차상관과 L-moment 추정값의 교차상관의 관계 유도)

  • Jeong, Dae-Il;Stedinger, Jery R.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.321-325
    • /
    • 2007
  • 3개의 매개변수(location, scale, shape)로 이루어진 GEV와 GLO 분포는, 미국의 공식적인 홍수빈도 분포인 Log Pearson Type III와 함께 수문분야에서 중요한 위치를 차지하고 있다. 본 연구에서는 Monte Carlo 실험을 이용하여 GEV와 GLO 분포에서 서로 다른 두 지점의 유출량 자료를 생성하여 L-CV(L-moment Coefficient of Variation; $\tau_2$)와 L-CS(L-moment Coefficient of Skewness; $\tau_3$)를 추정하였으며, L-moment 추정값들 간의 교차상관$(\tau_2-\tau_2,\;\tau_3-\tau_3,\;\tau_2-\tau_3)$과 유출량 자료간의 교차상관의 관계를 Simple Power 함수를 이용하여 유도하였다. 실험 과정에서 GEV와 GLO 분포가 비현실적인 음수 유출량을 생성하여, 실험 결과에 큰 영향이 있음을 확인하여, 두 분포에서 생성된 유출량 자료에서 음수값을 제외한 GEV+와 GLO+ 분포를 이용하여 관계식을 유도하고 이를 GEV와 GLO 분포의 결과와도 비교하였다. 본 연구에서 도출된 관계식은 향후 Generalized Least Square 회귀식을 이용하여 홍수분포의 지역 매개변수를 추정하기 위해 활용성이 클 것으로 기대한다.

  • PDF

A Study on Estimation of Probability Plot Correlation Coefficient Considering the Skewness for GLO distribution (GLO분포를 대상으로 왜곡도 계수를 고려한 확률도시 상관계수 검정통계량 추정)

  • Ahn, Hyunjun;Shin, Hongjoon;Kim, Sooyoung;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.39-39
    • /
    • 2015
  • 극치 수문(Hydrologic extremes)분야에서는 수문자료의 분포에 따라 Gumbel, GEV, 그리고 GLO 분포와 같은 다양한 확률통계 분포형이 존재한다. GEV와 GLO 분포형의 경우 Gumbel 분포형과 달리 형상매개변수가 포함된 3변수 분포형으로써 이상 기후 현상으로 인한 잦은 극치 수문사상을 표현하는데 좀 더 유연한 것으로 알려져 있다. 특히 GLO 분포형의 경우 영국에서 홍수빈도해석 시 적정분포형으로 선정된바 있다(Institute of Hydrology, 1999). 다양한 분포형 중에서 표본 자료를 대표할 수 있는 분포형을 선정하는 통계적 기법이 적합도 검정이다. 적합도 검정에는 $x^2$-검정, Cramer von-Mises 검정, Kolmogorov-Smirnov 검정, PPCC(probability plot correlation coefficient, 확률도시 상관계수)검정 등이 있으며 그 중 PPCC 검정은 이용방법이 간편하면서도 뛰어난 기각능력을 보이는 것으로 알려져 있다. 본 연구에서는 극치 수문분야에서 널리 이용되고 있는 GLO 분포형을 대상으로 자료의 왜곡도 영향을 고려할 수 있는 확률도시 상관계수 검정의 검정통계량을 추정하여 보았다.

  • PDF