• Title/Summary/Keyword: GIS Digital Map

Search Result 441, Processing Time 0.022 seconds

Kinematic Analysis of Plane Failure for Rock Slope Using GIS and Probabilistic Analysis Method (GIS와 확률론적 해석 기법을 기반으로 한 평면파괴의 운동학적 안정성 해석)

  • Lee, Seok Hwan;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.121-131
    • /
    • 2014
  • The stability of rock slope is mainly controlled by the orientation and shear strength of discontinuties in rock mass. Therefore, in kinematic analysis, the orientation of the combination of discontinuities and slope face is examined to determine if certain modes of failure can be occurred. In previous kinematic analysis, a representative orientation of the slope face and mean orientation of discontinuity set were used as input parameters. However, since the orientations of slope face varies according to locations of measurement, the representative slope face orientation could cause misunderstanding for kinematic instability. In addition, since the orientations of each discontinuity are scattered in the same discontinuity set, there is the possibility that uncertainties are involved in the procedure of kinematic analysis. Therefore, in this study, the detailed digital topographic map was used to obtain the orientation of slope face. In addition, the probabilistic analysis approach was utilized to deal properly with the uncertainties in discontinuity orientation. The proposed approach was applied to steep slopes in mountain road located in Baehuryeong, Chunncheon city, Gangwon-Do. The analysis results obtained from the deterministic and probabilistic analysis were compared to check the feasibility of proposed the analysis.

Analysis of Fractal Dimension for Urban Spatial Structure Based on Box Counting Method : Focusing Buildings Locations and Road Compositions in Cheongju (박스 계수법을 이용한 도시공간구조의 프랙탈 차원 분석 : 청주시의 건축물 분포 및 도로구조 사례를 중심으로)

  • Song, Sun-Gi;Kim, Dong-Won;Hwang, Hee-Yun
    • Journal of the Korean association of regional geographers
    • /
    • v.16 no.4
    • /
    • pp.387-399
    • /
    • 2010
  • This study, using Fractal theory, aims to examine the meaning in the aspect of urban spatial structure by reflecting the characteristics of elements organizing the urban space and at the same time measuring the urban form quantitatively. By calculating Fractal Dimension to Cheongju as a target, it conducted comparison and analysis by dividing building and road which are internal element of a space into the whole city and urbanized area to compare and analyze validity of the theory application and the inside of an actual urban space. For the method of an analysis, it calculated Fractal Dimension by linking a digital map including the property of building and road with GIS program and using box counting. An analysis result showed that the result value of Fractal Dimension by structure and road is all high and similar. It drew a similar result value from the whole Cheongju and the urbanized area as well, but commercial and industrial area showed low result value from the partial viewpoint. However, it is correct to regard these spaces as one space because they are intimately connected with a residential area. From the general viewpoint, it could be said that Cheongju's Fractal Dimension grows in the context of a urbanized area.

  • PDF

A Discussion of the Two Alternative Methods for Quantifying Changes : by Pixel Values Versus by Thematic Categories (변화의 정량화 방법에 관한 고찰 : 픽셀값 대 분류항목별)

  • Choung, Song-Hak
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.193-201
    • /
    • 1993
  • In a number of areas, there are important benefits to be gained when we bring both the detection and monitoring abilities of remote sensing as well as the philosophical approach and analytic capabilities of a geographic information system to bear on a problem. A key area in the joint applications of remote sensing technology and GIS is to identify change. Whether this change is of interest for its own sake, or because the change causes us to act (for example, to update a map), remote sensing provides an excellent suite of tools for detecting change. At the same time, a GIS is perhaps the best analytic toot for quantifying the process of change. There are two alternative methods for quantifying changes. The conceptually simple approach is to un the pixel values in each of the images. This method is practical but may be too simple to identify the variety of changes in a complex scene. The common alternative is called symbolic change detection. The analyst first decides on a set of thematic categories that are important to distinguish for the application. This approach is useful only if accurate landuse/cover classifications can be obtained. Persons conducting digital change detection must be intimately familiar with the environment under study, the quality of the data set and the characteristics of change detection algorithms. Also, much work remains to identify optimum change detection algorithms for specific geographic areas and problems.

  • PDF

Implementation of Real Time P2P Framework for Spatial Data Sharing between Mobile Devices using SIP (모바일 기기 간의 SIP기반 실시간 공간정보 공유 프레임워크 구현)

  • Park, Key-Ho;Jung, Jae-Gon
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.65-72
    • /
    • 2008
  • Mobile Collaboration is an enabling technology that makes users share information between mobile devices and various Mobile P2P platforms have been designed and implemented for it. There are, however, few research papers on application of SIP protocol to spatial data sharing on mobile devices. In this paper, SIP based real time sharing framework is proposed to compose a mobile P2P platform on which spatial data can be trans(erred. A new protocol based on WKT and WKB is defined to send and receive spatial objects with SIP MESSAGE method. Base maps such as digital maps and parcel maps can be provided by a map server that is integrated with SIP server after a new SIP session established and client agents are registered. The framework proposed based onSIP enables users to transfer spatial data such as maps and satellite images directly between mobile devices during VoIP based voice call and therefore, mobile applications can be applied in various domains such asforest management and national defense.

  • PDF

Change Detection at the Nakdong Estuary Delta Using Satellite Image and GIS (위성영상과 GIS를 이용한 낙동강하구 지형변화탐지)

  • Oh, Che-Young;Park, So-Young;Choi, Chul-Uong;Jeon, Sung-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.21-29
    • /
    • 2010
  • Nakdong Estuary Delta plays various roles of worldwide habitat for migratory birds and a sand supplier to Haewoondae Beach and Gwanganri, which are tourist attractions of Busan. In this study, long-term topographical changes of Nakdong Estuary (Jinwoo Islet, Sinja Islet, Doyodeung, Dadae Beach) coast were detected and interpreted. Through the analysis of 34 years' satellite images, it was found out that a part in between front side and back side of Jinwoo Islet increased, Sinja Islet was divided into two belts in 1970, and has formed an islet since the 1980s and extended westward. Due to the rapid development of small islets in front of Baekhabdeung since 1990s, Doyodeung formed in the late 1990s and is still growing. To make coastal map of Nakdong Estuary area, 13 images, of which the tide level was $99{\pm}13cm$, from the 112 Landsat images of the period from 1975 to 2009 were selected to section into water zone and land zone using NDV. And the rates of coastal line change such as MATLAB EPR(End Point Rate) and LRR(Linear Regression Rate) were calculated using DSAS 4.0(Digital Shoreline Analysis System). Through detecting topographical changes, EPR showed that the front(south) and back side(north) of Jinwoo Islet moved southward at -0.93~2.56m/yr, and changes in costal line and area of Jinwoo Islet were low and stable. The front and backside of Sinja Islet moved northward at 1~4m/yr, whereas the west side of Sinja Islet was stable at 2~3m/yr and east side of Sinja Islet moved northward at 10m/yr or faster. The front and back side of Doyodeung moved northward at 18~27m/yr, causing the increase of area, while the coastal line of Dadae Beach moved westward at 7m/yr, causing the expansion of the beach. LRR also demonstrated a similar trend to EPR. Although analysis of satellite images and GIS could enabled detection of topographical changes and quantitative analysis of natural phenomena, we found that continuous observation of natural phenomena and various analytical methods are required.

CAS 500-1/2 Image Utilization Technology and System Development: Achievement and Contribution (국토위성정보 활용기술 및 운영시스템 개발: 성과 및 의의)

  • Yoon, Sung-Joo;Son, Jonghwan;Park, Hyeongjun;Seo, Junghoon;Lee, Yoojin;Ban, Seunghwan;Choi, Jae-Seung;Kim, Byung-Guk;Lee, Hyun jik;Lee, Kyu-sung;Kweon, Ki-Eok;Lee, Kye-Dong;Jung, Hyung-sup;Choung, Yun-Jae;Choi, Hyun;Koo, Daesung;Choi, Myungjin;Shin, Yunsoo;Choi, Jaewan;Eo, Yang-Dam;Jeong, Jong-chul;Han, Youkyung;Oh, Jaehong;Rhee, Sooahm;Chang, Eunmi;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.867-879
    • /
    • 2020
  • As the era of space technology utilization is approaching, the launch of CAS (Compact Advanced Satellite) 500-1/2 satellites is scheduled during 2021 for acquisition of high-resolution images. Accordingly, the increase of image usability and processing efficiency has been emphasized as key design concepts of the CAS 500-1/2 ground station. In this regard, "CAS 500-1/2 Image Acquisition and Utilization Technology Development" project has been carried out to develop core technologies and processing systems for CAS 500-1/2 data collecting, processing, managing and distributing. In this paper, we introduce the results of the above project. We developed an operation system to generate precision images automatically with GCP (Ground Control Point) chip DB (Database) and DEM (Digital Elevation Model) DB over the entire Korean peninsula. We also developed the system to produce ortho-rectified images indexed to 1:5,000 map grids, and hence set a foundation for ARD (Analysis Ready Data)system. In addition, we linked various application software to the operation system and systematically produce mosaic images, DSM (Digital Surface Model)/DTM (Digital Terrain Model), spatial feature thematic map, and change detection thematic map. The major contribution of the developed system and technologies includes that precision images are to be automatically generated using GCP chip DB for the first time in Korea and the various utilization product technologies incorporated into the operation system of a satellite ground station. The developed operation system has been installed on Korea Land Observation Satellite Information Center of the NGII (National Geographic Information Institute). We expect the system to contribute greatly to the center's work and provide a standard for future ground station systems of earth observation satellites.

Site Index Equations and Estimation of Productive Areas for Major Pine Species by Climatic Zones Using Environmental Factors (기후대별 입지환경 인자에 의한 소나무류의 지위지수 추정식 및 적지 구명)

  • Shin, Man-Yong;Won, Hyung-Kyu;Lee, Seung-Woo;Lee, Yoon-Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.179-187
    • /
    • 2007
  • This study was conducted to develop site index equations for some pine species by climatic zones based on the relationships between site index and environmental factors. The selected pine species were Pinus densiflora Sieb. et. Zucc., Pinus densiflora for, erecta, and Pinus thunbergii. A total of 28 environmental factors were obtained from a digital forest site map. The influence of 28 environmental factors on site index was evaluated by multiple regression analysis. Four to eight environmental factors were selected in the final site index equation for pine species by climatic zones. The site index equations developed in this study was then verified by three evaluation statistics such as model's estimation bias, model's precision and mean square error type of measure. We concluded that the site index equations for the pine species by climatic Bones were capable of estimating forest site productivity. Based on these site index equations, the amount of productive areas for the species by climatic zones was estimated by applying the GIS technique to digital forest maps.

Mapping Monthly Temperature Normals Across North Korea at a Landscape Scale (북한지역 평년의 경관규모 기온분포도 제작)

  • Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2011
  • This study was carried out to estimate monthly mean of daily maximum and minimum temperature across North Korea at a 30 m grid spacing for a climatological normal year (1971-2000) and the 4 decadal averages (1971-1980, 1981-1990, 1991-2000, and 2001-2010). A geospatial climate interpolation method, which has been successfully used to produce the so-called 'High-Definition Digital Climate Maps' (HD-DCM), was used in conjunction with the 27 North Korean and 17 South Korean synoptic data. Correction modules including local effects of cold air drainage, thermal belt, ocean, solar irradiance and urban heat island were applied to adjust the synoptic temperature data in addition to the lapse rate correction. According to the final temperature estimates for a normal year, North Korean winter is expected colder than South Korean winter by $7^{\circ}C$ in average, while the spatial mean summer temperature is lower by $3^{\circ}C$ than that for South Korea. Warming trend in North Korea for the recent 40 years (1971-2010) was most remarkable in spring and fall, showing a 7.4% increase in the land area with 15 or higher daily maximum temperature for April.

Relationship between Solar Radiation in Complex Terrains and Shaded Relief Images (복잡지형에서의 일사량과 휘도 간의 관계 구명)

  • Yun, Eun-Jeong;Kim, Dae-Jun;Kim, Jin-Hee;Kang, Dae-Gyoon;Kim, Soo-Ock;Kim, Yongseok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.283-294
    • /
    • 2021
  • Solar radiation is an important meteorological factor in the agricultural sector. The ground exposed to sunlight is highly influenced by the surrounding terrains especially in South Korea where the topology is complex. The solar radiation on an inclined surface is estimated using a solar irradiance correction factor for the slope of the terrain along with the solar radiation on a horizontal surface. However, such an estimation method assumes that there is no barrier in surroundings, which blocks sunlight from the sky. This would result in errors in estimation of solar radiation because the effect of shading caused by the surrounding terrain has not been taken into account sufficiently. In this study, the shading effect was simulated to obtain the brightness value (BV), which was used as a correction factor. The shaded relief images, which were generated using a 30m-resolution digital elevation model (DEM), were used to derive the BVs. These images were also prepared using the position of the sun and the relief of the terrain as inputs. The gridded data where the variation of direct solar radiation was quantified as brightness were obtained. The value of cells in the gridded data ranged from 0 (the darkest value) to 255 (the brightest value). The BV analysis was performed using meteorological observation data at 22 stations installed in study area. The observed insolation was compared with the BV of each point under clear and cloudless condition. It was found that brightness values were significantly correlated with the solar radiation, which confirmed that shading due to terrain could explain the variation in direct solar radiation. Further studies are needed to accurately estimate detailed solar radiation using shaded relief images and brightness values.

A Study on Optimal Site Selection for Automatic Mountain Meteorology Observation System (AMOS): the Case of Honam and Jeju Areas (최적의 산악기상관측망 적정위치 선정 연구 - 호남·제주 권역을 대상으로)

  • Yoon, Sukhee;Won, Myoungsoo;Jang, Keunchang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.208-220
    • /
    • 2016
  • Automatic Mountain Meteorology Observation System (AMOS) is an important ingredient for several climatological and forest disaster prediction studies. In this study, we select the optimal sites for AMOS in the mountain areas of Honam and Jeju in order to prevent forest disasters such as forest fires and landslides. So, this study used spatial dataset such as national forest map, forest roads, hiking trails and 30m DEM(Digital Elevation Model) as well as forest risk map(forest fire and landslide), national AWS information to extract optimal site selection of AMOS. Technical methods for optimal site selection of the AMOS was the firstly used multifractal model, IDW interpolation, spatial redundancy for 2.5km AWS buffering analysis, and 200m buffering analysis by using ArcGIS. Secondly, optimal sites selected by spatial analysis were estimated site accessibility, observatory environment of solar power and wireless communication through field survey. The threshold score for the final selection of the sites have to be higher than 70 points in the field assessment. In the result, a total of 159 polygons in national forest map were extracted by the spatial analysis and a total of 64 secondary candidate sites were selected for the ridge and the top of the area using Google Earth. Finally, a total of 26 optimal sites were selected by quantitative assessment based on field survey. Our selection criteria will serve for the establishment of the AMOS network for the best observations of weather conditions in the national forests. The effective observation network may enhance the mountain weather observations, which leads to accurate prediction of forest disasters.