DOI QR코드

DOI QR Code

A Study on Optimal Site Selection for Automatic Mountain Meteorology Observation System (AMOS): the Case of Honam and Jeju Areas

최적의 산악기상관측망 적정위치 선정 연구 - 호남·제주 권역을 대상으로

  • Yoon, Sukhee (Center for Forest and Climate Change, Forest Conservation Department, National Institute of Forest Science) ;
  • Won, Myoungsoo (Center for Forest and Climate Change, Forest Conservation Department, National Institute of Forest Science) ;
  • Jang, Keunchang (Center for Forest and Climate Change, Forest Conservation Department, National Institute of Forest Science)
  • 윤석희 (국립산림과학원 산림보전부 기후변화연구센터) ;
  • 원명수 (국립산림과학원 산림보전부 기후변화연구센터) ;
  • 장근창 (국립산림과학원 산림보전부 기후변화연구센터)
  • Received : 2016.11.21
  • Accepted : 2016.12.09
  • Published : 2016.12.30

Abstract

Automatic Mountain Meteorology Observation System (AMOS) is an important ingredient for several climatological and forest disaster prediction studies. In this study, we select the optimal sites for AMOS in the mountain areas of Honam and Jeju in order to prevent forest disasters such as forest fires and landslides. So, this study used spatial dataset such as national forest map, forest roads, hiking trails and 30m DEM(Digital Elevation Model) as well as forest risk map(forest fire and landslide), national AWS information to extract optimal site selection of AMOS. Technical methods for optimal site selection of the AMOS was the firstly used multifractal model, IDW interpolation, spatial redundancy for 2.5km AWS buffering analysis, and 200m buffering analysis by using ArcGIS. Secondly, optimal sites selected by spatial analysis were estimated site accessibility, observatory environment of solar power and wireless communication through field survey. The threshold score for the final selection of the sites have to be higher than 70 points in the field assessment. In the result, a total of 159 polygons in national forest map were extracted by the spatial analysis and a total of 64 secondary candidate sites were selected for the ridge and the top of the area using Google Earth. Finally, a total of 26 optimal sites were selected by quantitative assessment based on field survey. Our selection criteria will serve for the establishment of the AMOS network for the best observations of weather conditions in the national forests. The effective observation network may enhance the mountain weather observations, which leads to accurate prediction of forest disasters.

본 연구는 매년 발생하고 있는 산불, 산사태 등의 산림 재해방지를 위해 호남과 제주의 산악지역을 대상으로 최적의 산악기상관측망 입지를 선정하는 연구를 수행하였다. 먼저 적정위치 선정을 위해 고려해야 하는 항목들을 공간자료화한 후 공간 분석을 통해서 후보지를 선정하고 현장 조사를 통해 정량적 평가를 수행함으로써 최종적인 적정위치를 선정하였다. 공간자료는 과거 10년간의 산불발생 정보와 과거 7년간의 산사태위험등급 정보, 산림청의 국사경계도, 국유지의 임도와 등산로 그리고 기상청의 자동기상관측소(AWS)와 산림청의 산악기상관측소 위치정보, 30m 해상도의 수치표고모델(DEM)을 사용하였다. 공간분석은 산불과 산사태의 1-2등급의 위험지에 대한 추출 및 중첩 분석, 산림청 국유지 내에 100m 버퍼를 준 임도와 등산로의 접근성 분석, 기상관측소의 2.5km 버퍼를 준 중복성 분석, 산악기상관측 입지 환경 조성을 위한 고도 200m 이상의 지형특성 분석을 통해 종합적인 중첩분석을 수행하였다. 공간분석 결과, 총 159개의 중첩 폴리곤이 추출되었고 구글어스 등을 활용하여 능선과 정상부에 총 64개의 적정위치 후보지를 선정하였다. 선정된 후보지는 기상관측환경, 접근성, 통신 및 전력공급 환경, 기상관측소의 중복성에 대한 정량적인 현장 평가를 통해서 총점이 70점 이상인 지점을 '적합'으로 판정하여 고득점 순으로 산악기상관측망의 적정위치 26개소를 선정하였다. 따라서 적정위치 선정 기법에 의해 구축된 산악기상관측망의 기상정보는 향후 산불, 산사태 등과 같은 산림재해위험 예측력의 향상과 산림 복잡 지형에 대한 미기상 연구에 활용이 가능할 것으로 판단된다.

Keywords

References

  1. Bayraktar, H., and F. S. Turalioglu, 2005: A kriging-based approach for locating a sampling site - in the assessment of air quality. Stochastic Environmental Research and Risk Assessment 19(4), 301-305. https://doi.org/10.1007/s00477-005-0234-8
  2. Chung, S. R., and K. U. Lim, 1992: Weather and climatic environment of mountains. Press of one-top Inc. Seoul. 314pp.
  3. Mandelbrot, B. B., 1967: How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156(3775), 636-638. https://doi.org/10.1126/science.156.3775.636
  4. Kantelhardt, J. W., S. A. Zschiegner, E. K-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, 2002: Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications 316(1), 87-114. https://doi.org/10.1016/S0378-4371(02)01383-3
  5. Park, C. H., H. W. Lee, and W. S. Jung, 2003: The effects of low-level jet and topography on heavy rainfall near Mt. Jirisan. Asia-Pacific Journal of Atmospheric Sciences 39(4), 441-458. (In Korean with English abstract)
  6. Kim, J. H., and I. U. Chung, 2006: Study on mechanisms and orographic effect for the springtime downslope windstorm over the Yeongdong region. Atmosphere 16(2), 67-83. (In Korean with English abstract)
  7. Kim, S. Y., W. T. Oh, and S. H. Lee, 2013: Analysis on the density of the weather station over South Korea. The Geographical Journal of Korea 47(1), 47-59. (In Korean with English abstract)
  8. Korea Forest Service, 2013: The annual report of landslide statistics, Korea Forest Service. (In Korean)
  9. Korea Forest Service, 2015: The annual report of forest fire statistics, Korea Forest Service. (In Korean)
  10. Lee, S. Y., I. U. Jung, and S. K. Kim, 2006: A study on establishment of the optimum mountain meteorological observation network system for forest fire prevention. Korea Journal of Agricultural and Forest Meteorology 8(1), 36-44.
  11. Paladin, G., and A. Vulpiani, 1987: Anomalous scaling laws in multifractal objects. Physics Reports 156(4), 147-225. https://doi.org/10.1016/0370-1573(87)90110-4
  12. Seo, S. K., K. Kim, K. H. Chang, and J. K. Park, 2013: Volatility analysis of rainfall, wind speed, and temperature by using the multifractal detrended fluctuation analysis. New Physics: Sae Mulli 63(8), 872-881. (In Korean with English abstract) https://doi.org/10.3938/NPSM.63.872
  13. Shepard, D., 1968: A two-dimensional interpolation function for irregularly spaced data. Proceedings of the 1968 23rd ACM National Conference, New York, NY, USA, 517-524.
  14. Ware, C., W. Knight, and D. Wells, 1991: Memory intensive statistical algorithms for multibeam bathymetric data. Computers & Geosciences 17(7), 985-993. https://doi.org/10.1016/0098-3004(91)90093-S
  15. Won, M. S., S. H. Yoon, K. S. Koo, and K. H. Kim, 2011: Spatio-temporal analysis of forest fire occurrences during the dry season between 1990s and 2000s in South Korea. Journal of the Korean Association of Geographic Information Studies 14(3), 150-162. (In Korean with English abstract) https://doi.org/10.11108/kagis.2011.14.3.150
  16. Woo, C., H. Kwon, C. Lee, and K. Kim, 2014: Landslide hazard prediction map based on logistic regression model for applying in the whole country of South Korea. Journal of the Korean Society of Hazard Mitigation 14(6), 117-123. (In Korean with English abstract)
  17. Won, M. S., 2015: Automatic mountain meteorology observation system and strategies of activating information sharing. Proceeding of Symposium on Sharing Mountain Weather Information, National Institute of Forest Science, Seoul, 3-19.
  18. Onnara Real Estate Information Portal. http://www.onnara.go.kr/(2015. 1. 1)