• Title/Summary/Keyword: GIC

Search Result 109, Processing Time 0.025 seconds

Cloning, Nucleotide Sequencing, and Characterization of the ptsG Gene Encoding Glucose-Specific Enzyme II of the Phosphotransferase System from Brevibacterium lactofermentum

  • Yoon, Ki-Hong;Lee, Kyu-Nam;Lee, Jung-Kee;Park, Se-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.582-588
    • /
    • 1999
  • A Brevibacterium lactofermentum gene coding for a glucose-specific permease of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned, by complementing an Escherichia coli mutation affecting a ptsG gene with the B. lactofermentum genomic library, and completely sequenced. The gene was identified as a ptsG, which enables an E. coli transformant to transport non-metabolizable glucose analogue 2-deoxyglucose (2DG). The ptsG gene of B. lactofermentum consists of an open reading frame of 2,025 nucleotides encoding a polypeptide of 674 amino acid residues and a TAA stop codon. The 3' flanking region contains two stem-loop structures which may be involved in transcriptional termination. The deduced amino acid sequence of the B. lactofermentum enzyme $II^{GIe}$ specific to glucose ($EII^{GIe}$) has a high homology with the Corynebacterium glutamicum enzyme $II^{Man}$ specific to glucose and mannose ($EII^{Man}$), and the Brevibacterium ammoniagenes enzyme $II^{GIc}$ specific to glucose ($EII^{GIc}$). The 171-amino-acid C-terminal sequence of the $EII^{Glc}$ is also similar to the Escherichia coli enzyme $IIA^{GIc}$ specific to glucose ($IIA^{GIc}$). It is interesting that the arrangement of the structural domains, IIBCA, of the B. lactofermentum $EII^{GIc}$ protein is identical to that of EIIs specific to sucrose or $\beta$-glucoside. Several in vivo complementation studies indicated that the B. lactofermentum $EII^{Glc}$ protein could replace both $EII^{ Glc}$ and $EIIA^{Glc}$ in an E. coli ptsG mutant or crr mutant, respectively.

  • PDF

Strengthening of conventional dental glass ionomer cement by addition of chitosan powders with low or high molecular weight (저/고분자량 키토산에 의한 종래형 치과용 글라스아이오노머 시멘트의 강화)

  • Kim, Dong-Ae;Kim, Gyu-Ri;Jun, Soo-Kyung;Lee, Jung-Hwan;Lee, Hae-Hyoung
    • Korean Journal of Dental Materials
    • /
    • v.44 no.1
    • /
    • pp.69-77
    • /
    • 2017
  • The aim of this study was to investigate the effects of chitosan powder addition on the strengthening of conventional glass ionomer cement. Two types of chitosan powders with different molecular weight were mixed with conventional glass ionomer cement (GIC): low-molecular weight chitosan (CL; 50~190 kDa), high-molecular weight chitosan (CH; 310~375 kDa). The chitosan powders (CL and CH) were separately added into the GIC liquid (0.25-0.5 wt%) under magnetic stirring, or mixed with the GIC powder by ball-milling for 24 h using zirconia balls. The mixing ratio of prepared cement was 2:1 for powder to liquid. Net setting time of cements was measured by ISO 9917-1. The specimens for the compressive strength (CS; $4{\times}6mm$), diametral tensile strength (DTS; $6{\times}4mm$), three-point flexure (FS; $2{\times}2{\times}25mm$) with flexure modulus (FM) were obtained from cements at 1, 7, and 14 days after storing in distilled water at $(37{\pm}1)^{\circ}C$. All mechanical strength tests were conducted with a cross-head speed of 1 mm/min. Data were statistically analyzed by one-way ANOVA and Tukey HSD post-hoc test. The mechanical properties of conventional glass ionomer cement was significantly enhanced by addition of 0.5 wt% CL to cement liquid (CS, DTS), or by addition of 10 wt% CH (FS) to cement powder. The CL particles incorporated into the set cement were firmly bonded to the GIC matrix (SEM). Within the limitation of this study, the results indicated that chitosan powders can be successfully added to enhance the mechanical properties of conventional GIC.

Effects of Carbon Nanotube Addition on the Mechanical Properties of Dental Glassionomer Cement (탄소나노튜브 첨가에 의한 치과용 글라스아이오노머 시멘트의 기계적 특성)

  • Kim, Dong-Ae;Kim, Han-Sem;Shin, Ueon-Sang;Lee, Hae-Hyoung
    • Korean Journal of Dental Materials
    • /
    • v.43 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • The aim of this study was to investigate the effect of multiwall carbon nanotube functionalized with carboxyl group (MWCNT-COOH) on the mechanical properties of dental glassionomer cement (GIC). MWCNT-COOH was prepared by the acid oxidative method. The MWCNT-COOH was incorporated into a commercial GIC powder or liquid at 0.5 wt% or 1.0 wt%. The net setting time of the cements was measured in accordance with ISO 9917 (Dental water-based cement). Specimens for compressive strength ($4mm{\varphi}{\times}6mm$), diametral tensile strength ($6mm{\varphi}{\times}4mm$) and flexure strength with modulus ($2mm{\times}2mm{\times}25mm$) were prepared by mixing with the cement liquid and kept in water bath of $(37{\pm}1)^{\circ}C$. Mechanical tests were conducted in 1 d, 7 d, and 14 days at a cross-head speed of 1 mm/min. Compressive strength of GIC mixed with 0.5 wt% MWCNT-COOH increased significantly at 7 d. However, overall mechanical properties of GIC modified with MWCNT were not significantly increased with a delayed setting time, in comparison with control cement. Overall results indicated that the MWCNT/GIC composite cements showed a limited strengthening effect for dental glassionomer cement.

Direct synthesis of Neu5Ac from GlcNAc using NALasc and GlcNAc 2-epimerase

  • Lee, Jeong-Gyu;Lee, Jeong-O;Lee, Seon-Gu;Kim, Byeong-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.210-214
    • /
    • 2001
  • GlcNAc 2-epimerase gene from human was cloned. However GIcNAc 2-epimerase was expressed in E. coli as inclusion body formation. Several approaches were tried such as expression in low temperature and low concentration of IPTG. With these treatments production of active form of human GIcNAc 2-epimerase ι ,vas enhanced. For the direct synthesis of NeuAc from GlcNAc and pyruvate, NALase and GlcNAc 2-epimerase were characterized in terms of temperature effect on activity. equilibrium and stability, inhibition by pyruvate etc. For cheap and ease preparation of both the NALase and GlcNAc 2-epimerase, pEN24ma vector was made. which express both the NALasc and GIcNAc 2-epimerase simultaneously. In addition, E. coli BL21(DE3) harboring two plasmids was also made. Of the two systems, the latter was better for the expression of both enzymes.

  • PDF

Current aspects and prospects of glass ionomer cements for clinical dentistry

  • Park, Eun Young;Kang, Sohee
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.3
    • /
    • pp.169-178
    • /
    • 2020
  • Glass ionomer cement (GIC) is a tailor-made material that is used as a filling material in dentistry. GIC is cured by an acid-base reaction consisting of a glass filler and ionic polymers. When the glass filler and ionic polymers are mixed, ionic bonds of the material itself are formed. In addition, the extra polymer anion reacts with calcium in enamel or dentin to increase adhesion to the tooth tissue. GICs are widely used as adhesives for artificial crowns or orthodontic brackets, and are also used as tooth repair material, cavity liner, and filling materials. In this review, the current status of GIC research and development and its prospects for the future have been discussed in detail.

Investigation of the antibacterial and mechanical properties of glassionomer cement containing multiwall carbon nanotube(MWCNT) (다중벽 탄소나노튜브를 첨가한 글라스아이오노머시멘트의 항균효과 및 기계적 특성)

  • Jeong, mi-ae;Kim, dong-ae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.485-486
    • /
    • 2017
  • 치과용 글라스아이오노머(GIC)는 치과에서 폭넓게 응용되고 있는 재료 중 하나이다. 그러나 GIC의 낮은 기계적 특성으로 인해 구강내 사용범위가 제한적이다. 이에 본 연구는 기능성 다중벽 탄소나노튜브(multi wall carbon nanotube; MWCNT-COOH)를 각 농도별(0.25-1.0 wt%)로 기존의 분말에 첨가하여 복합체를 제조한 후 제조사의 지시에 따란 분말(2):액(1)의 비율로 시편을 제작하여 다중벽탄소나노튜브가 GIC의 기계적 특성과 항균효과에 미치는 영향을 조사하였다.

  • PDF

Characteristics of Exfoliated Graphite Prepared by Intercalation of Gaseous SO3into Graphite

  • Lee, Beom-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1801-1805
    • /
    • 2002
  • The graphite intercalation compounds(GIC) were prepared by a dry process that led to the intercalation from the direct reaction of gaseous $SO_3$ with flake type graphite. The basal spacing of the GIC was increased from 8.3 ${\AA}$ to 12 in the gallery height. The ejection of interlayer $SO_3$ molecules by the heating for 1 minute at $950^{\circ}C$ resulted in an exfoliated graphite (EG) with surprisingly high expansion in the direction of c-axis. The expansion ratios of the exfoliated graphites were increased greatly between 220 times and 400 times compared to the original graphite particles, and the bulk density was range of 0.0053 to 0.01 $g/cm^3$, depending on reaction time. The pore size distribution of exfoliated graphite was in the range of $10-170{\mu}m$, which exhibites both mesoporosity and macroporosities. This result indicates that the direct reaction of graphite paricles with gaseous $SO_3$ can be proposed as an another route for the exfoliated graphite having excellent physical properties.

COMPARISON OF BIOCOMPATIBILITY OF FOUR ROOT PERFORATION REPAIR MATERIALS (치근 천공 치료 재료의 생체친화성의 비교)

  • Kang, Min-Kyung;Bae, In-Ho;Koh, Jeong-Tae;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.3
    • /
    • pp.192-198
    • /
    • 2009
  • This study was carried out in order to determine in vitro biocompatibility of white mineral trioxide aggregate (MTA), and to compare it with that of the commonly used materials, i. e. calcium hydroxide liner (Dycal), glass ionomer cement (GIC), and Portland cement which has a similar composition of MTA. To assess the biocompatibility of each material, cytotoxicity was examined using MG-63 cells. The degree of cytotoxicity was evaluated by scanning electron microscopy (SEM) and a colorimetric method, based on reduction of the tetrazolium salt 2,3 bis {2methoxy 4nitro 5[(sulfenylamino) carbonyl] 2H tetrazolium hydroxide} (XTT) assay. The results of SEM revealed the cells in contact with GIC, MTA. and Portland cement at 1 and 3 days were apparently healthy. In contrast, cells in the presence of Dycal appeared rounded and detached. In XTT assay, the cellular activities of the cells incubated with all the test materials except Dycal were similar, which corresponded with the SEM observation. The present study supports the view that MTA is a very biocompatible root perforation repair material. It also suggests that cellular response of Portland cement and GIC are very similar to that of MTA.

Comparison of the Microleakage and Shear Bond Strength to Dentine of Different Tricalcium Silicate-based Pulp Capping Materials (Tricalcum-silicate 기반 치수복조제의 미세누출 및 상아질 전단결합강도 비교)

  • Kim, Miri;Jo, Wansun;Jih, Myeongkwan;Lee, Sangho;Lee, Nanyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.1
    • /
    • pp.76-84
    • /
    • 2019
  • This study evaluated the microleakage of three restorative materials and three tricalcium silicate-based pulp capping agents. The restorative materials were composite resin (CR), resin-reinforced glass ionomer cement (RMGI), and traditional glass ionomer cement (GIC) and the pulp capping agents were TheraCal $LC^{(R)}$ (TLC), $Biodentine^{(R)}$ (BD), and $ProRoot^{(R)}$ white MTA (WMTA). Additionally, shear bond strengths between the pulp-capping agents and dentine were compared. Class V cavities were made in bovine incisors and classified into nine groups according to the type of pulp-capping agent and final restoration. After immersion in 0.5% fuchsin solution, each specimen was observed with a stereoscopic microscope to score microleakage level. The crowns of the bovine incisors were implanted into acrylic resin, cut horizontally, and divided into three groups. TLC, BD and WMTA blocks were applied on dentine, and the shear bond strengths were measured using a universal testing machine. The microleakage was lowest in TLC + GIC, TLC + RMGI, TLC + CR, and BD + GIC groups and highest in WMTA + RMGI and WMTA + CR groups. The shear bond strength of BD group was the highest and that of WMTA group was significantly lower than the others.

Influence of Rheological Properties of Adhesive Polymer on Strain Energy Release Rate of Mode I and Adhesive Tensile Strength (모드I의 변형 에너지 해방율과 인장 접착강도에 미치는 접착제 고분자의 유변특성의 영향)

  • H. Mizumachi
    • The Korean Journal of Rheology
    • /
    • v.8 no.2
    • /
    • pp.129-138
    • /
    • 1996
  • 접착강도는 접착제의 점탄성을 반영한 온도·속도 의존성을 나타낸다는 것이 잘 알 려져있다. 특히 유리전이온도(Tg)에서의 역학적 완화기구가 접착층의 변형을 수반하는 접착 층의 변형을 수반하는 접착강도에 크게 영향을 미치고 있다. 또한 접착계의 모드I의 변형에 너지 해방율(GIC)를 측정할때에도 접착제의 변형과 파괴가 발생하기 접착제의 점탄성이 그 값에 어떠한 영향을 미치는 지에 흥미가 깊다. 본 연구에서는 2종류의 에폭시 수지를 블랜 드한 접착제를 이용하여 일정한 측정조건에서 인장 접착강도와 GIC의 상관관계에 대하여서 도 토론하였다.

  • PDF