• 제목/요약/키워드: GHG target management

Search Result 38, Processing Time 0.023 seconds

THE SCENARIOS OF GREENHOUSE GAS REDUCTION ON SEOUL NATIONAL UNIVERSITY

  • Sooyoung Kim;Hyun-Soo Lee;Moonseo Park;Kwon-Sik Song
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.213-218
    • /
    • 2013
  • To respond to global warming and climate change, Korean Government has implemented the GHG Target Management, which leads to a voluntary reduction in greenhouse gases from large businesses. Korean universities have put efforts on reducing GHG emissions and energy consumptions in the campuses, however, because of various activities and its characteristic of non-profit organization, establishing a long-term plan for reducing greenhouse gases is necessary. In this research, the Seoul National University's energy usage is analyzed and applicable technologies for reducing GHG emissions are extracted. Hence, three scenarios for performing the GHG Target Management are established. Proposed scenario is available for GHG Target Management and it would be expected to support decision- makings for reducing GHG emissions.

  • PDF

Process of Community-based Sustainable CO2 Management

  • Park, Jae-Hyun;Hong, Tae-Hoon
    • Journal of Construction Engineering and Project Management
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 2011
  • According to the United Nations Framework Convention on Climate Change (UNFCCC), many countries around the world have been concerned with reducing Greenhouse Gas (GHG) emissions. Reducing the level of building energy consumption is particularly important in bringing GHG down. Because of this, many countries including the US and the EU are enforcing energy-related policies. However, these policies are focused on management of single types of buildings such as public buildings and office buildings, instead of management on a national level. Thus, although various policies have been enforced in many countries, $CO_2$ management on a national level is still not an area of focus. Therefore, this study proposed a community-based $CO_2$ management process that allows government-led GHG management. The minimum unit of the community in this study is a plot, and the process consists of three steps. First, the current condition of the GHG emission was identified by plot. Second, based on the identified results, the GHG emission reduction target was distributed per plot by reflecting the weighted value according to (i) the target $CO_2$ reduction in the buildings in the standard year, (ii) region, and (iii) building usage and size. Finally, to achieve the allocated target reduction, building energy management was executed according to the properties of the building located on each plot. It can be expected that the proposed community-based $CO_2$ management process will enable government-level GHG management, through which environment-friendly building construction can be promoted.

PROCESS OF COMMUNITY-BASED SUSTAINABLE CO2 MANAGEMENT

  • Jaehyun Park;Taehoon Hong
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.262-268
    • /
    • 2011
  • According to the United Nations Framework Convention on Climate Change (UNFCCC), many countries around the world have been concerned with reducing Greenhouse Gas (GHG) emissions. Reducing the level of building energy consumption is particularly important in bringing GHG down. Because of this, many countries including the US and the EU are enforcing energy-related policies. However, these policies are focused on management of single types of buildings such as public buildings and office buildings, instead of management on a national level. Thus, although various policies have been enforced in many countries, CO2 management on a national level is still not an area of focus. Therefore, this study proposed a community-based CO2 management process that allows government-led GHG management. The minimum unit of the community in this study is a plot, and the process consists of three steps. First, the current condition of the GHG emission was identified by plot. Second, based on the identified results, the GHG emission reduction target was distributed per plot by reflecting the weighted value according to (i) the target CO2 reduction in the buildings in the standard year, (ii) region, and (iii) building usage and size. Finally, to achieve the allocated target reduction, building energy management was executed according to the properties of the building located on each plot. It can be expected that the proposed community-based CO2 management process will enable government-level GHG management, through which environment-friendly building construction can be promoted.

  • PDF

Comparison of GHG Emission with Activity Data in Korean Railroad Sector (국내 철도부문의 활동도 자료에 따른 온실가스 배출량 비교 연구)

  • Lee, Jae-Young;Rhee, Young-Ho;Kim, Yong-Ki;Jung, Woo-Sung;Kim, Hee-Man
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.861-864
    • /
    • 2011
  • Since national GHG reduction target by 2020 has been presented in Korea, the role of railroad has been reinforced within transport system due to the allocation of reduction target into sector. So, it is necessary to manage activity data systematically for the calculation of GHG emission in railroad. Now, the activity data of diesel consumption for NIR(National Inventory Report) are provided from oil supply and demand statistics. On the other hands, the activity data collected directly from railroad operating companies are used for GHG & Energy Target Management Act. This study aimed to assess the GHG emissions using two kinds of activity data related to the diesel consumption of railroad in 2009 and 2010. As a result, GHG emissions based on oil supply and demand statistics was 636 thousands ton $CO_{2e}$, but the activity data collected from railroad operating companies showed 649 thousands ton $CO_{2e}$ in 2009. Also, the gap of $CO_{2e}$ emission was increased in 2010. These trends were caused because oil supply and demand statistics included total diesel sales volume during 1 year and the activity data collected from railroad operating companies were the amount of diesel consumption only at railcar operation and maintenance step. In conclusion, it is important to develop the management and verification system of activity data with high reliability to substitute oil supply and demand statistics in railroad sector.

  • PDF

A Study on Counter Strategy of GHG·Energy Target Management System for Construction Firm (건설회사의 온실가스·에너지 목표관리제 대응전략 분석에 관한 연구)

  • Roh, Seung-Jun;Tae, Sung-Ho;Kim, Tae-Hyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.135-136
    • /
    • 2012
  • The purpose of this study is to analysis of counter strategy of greenhouse gas·energy target management system for the construction firm. For this purpose, the greenhouse gas·energy target management system of other industries was investigated. The selection possibility that is construction firm to be managed company was analyzed. In addition, status of counter strategy on the greenhouse gas·energy target management system were investigated and analyzed about 5 domestic major construction firm via questionnaire and interview. As a result, the counter strategy by organization and annual for the greenhouse gas·energy target management system was drawn.

  • PDF

Generation Expansion Planning Model Supporting Diverse Environmental Policies for Reduction of Greenhouse Gases

  • Lee, Jeong-In;Lee, Il-Woo;Kim, Bal-Ho
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.295-305
    • /
    • 2015
  • The purpose of this paper is to a develop model for generation expansion planning that can support diverse environmental policies for the reduction of greenhouse gases (GHGs) of South Korea. South Korea is required to reduce its GHG emissions by 30% from the BAU level by 2020. The Wien Automatic System Planning Package currently used in South Korea has limitations in terms of the application of renewable energy policies and GHG targets; this paper proposes the use of an equipment planning model named generation and transmission expansion program, which has been developed to resolve such limitations. For verification of the model, a case study on the 6th Basic Plan of Long-Term Electricity Supply and Demand has been conducted. The results show that for the year 2020 South Korea's annual GHG emissions will be 36.6% more than the GHG Target Management System (GHG TMS) target set for the same year (30%). To achieve the GHG TMS target, the costs involved amount to about 72 trillion KRW (70 billion USD). Consequently, the South Korean government needs to review the performability of this target.

Analysis of Greenhouse Gas Emission and Abatement Potential for the Korean Waste Sector (한국의 폐기물부문의 온실가스 배출량 및 감축잠재량 분석)

  • Chung, Yongjoo;Kim, Hugon
    • Korean Management Science Review
    • /
    • v.33 no.4
    • /
    • pp.17-31
    • /
    • 2016
  • Waste sector has been a target of abatement policies by the most governments, even though its greenhouse gas (GHG) emission is not so high, since it is related to almost of other sectors. This study propose new GHG calculation equations which resolves logical contradiction of IPCC GL (Intergovernmental Panel on Climate Change Guideline) equations by including waste-to-energy effects. According to two GHG calculation equations, GHG emission inventory and BAU by the year 2050 have been computed. And GHG abatement potential and marginal cost for the five abatement policies carefully selected from the previous researches have been calculated for the year 2020. The policy that makes solid fuel like RDF from flammable wastes and uses them as combustion fuel of electricity generations has been found to be the most efficient and effective one among five policies. The cumulative abatement amount when five policies not mutually exclusive are applied sequentially has been reckoned.

A Case Study of GHG Reduction Based on Electricity Consumption Pattern of Individual Rooms : In case of Seoul National University (실별 전력 소비패턴에 의거한 온실가스 감축 잠재량 산정 - 서울대학교 관악 캠퍼스를 대상으로 -)

  • Kim, Seok-Young;Park, Moonseo;Lee, Hyun-Soo;Kim, Sooyoung;Jung, Hye-Jin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.4
    • /
    • pp.55-64
    • /
    • 2013
  • As GHG target management is introduced in Korea, designated establishment takes responsibilities to reduce more than 30% of expected GHG emission until 2020. Although decreasing GHG has been requested to universities which consume great amount of energy, there are difficulties to apply high cost countermeasures. Therefore, this research suggest a low cost, easily-applicable energy saving method, and derive potential GHG reduction amount in the case of SNU, Kwan-ak campus. First of all, 11 rooms of different use were chosen as the samples, and energy consumption in each room was measured. Standard models for each room were built through researching on the electric devices in each room. Moreover, energy consumption was computed for each devices through analyzing the pattern of electricity consumption. 32 GHG reduction technology and action program were chosen, and they were applied to the standard models for individual rooms. Through multiplying energy reduction rate of each program to energy consumption of each electric device, maximum energy reduction of each electric device is derived. Through that, Maximum GHG reduction for individual rooms and each month and the total GHG reduction capacity of Kwan-ak campus were computed. It was found out that approximately $5,311tCO_2$-eq can be reduced, when reduction technology and action program suggested by this research are applied. It appeared 24.48% of requested reduction amount to SNU can be reduced, till 2016.

Estimation of GHG emission and potential reduction on the campus by LEAP Model (LEAP 모델을 이용한 대학의 온실가스 배출량 및 감축잠재량 분석)

  • Woo, Jeong-Ho;Choi, Kyoung-Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.409-415
    • /
    • 2012
  • Post-kyoto regime has been discussing with the GHG reduction commitment. GHG energy target management system also has been applied for the domestic measures in the country. Universities are major emission sources for GHG. It is very important for campus to built the GHG inventory system and estimate the potential GHG emission reduction. In general, GHG inventory on the campus was taken by the IPCC guidance with the classification of scope 1, 2, and 3. Electricity was the highest portion of GHG emission on the campus as 5,053.90 $tonsCO_2eq/yr$ in 2009. Manufacturing sector was the second high emission and meant GHG in laboratory. Potential GHG reduction was planned by several assumptions such as installation of occupancy sensor, exchanging LED lamp and photovoltaic power generation. These reduction scenarios was simulated by LEAP model. In 2020, outlook of GHG emission was estimated by 17,435.98 tons of $CO_2$ without any plans of reduction. If the reduction scenarios was applied in 2020, GHG emission would be 16,507.60 tons of $CO_2$ as 5.3% potential reduction.

Estimation of greenhouse gas emissions: An alternative approach to waste management for reducing the environmental impacts in Myanmar

  • Tun, Maw Maw;Juchelkova, Dagmar
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.618-629
    • /
    • 2019
  • Along with growing population and economic development, increasing waste generation rates in developing countries have become a major issue related to the negative impacts of waste management on the environment. Currently, the business-as-usual waste management practices in Myanmar are largely affecting the environment and public health. Therefore, this study developed an alternative approach to waste management for reducing the environmental impacts in Myanmar by highlighting the greenhouse gas (GHG) emissions from business-as-usual practices and three proposed scenarios during 2018-2025. The calculation methods of the Intergovernmental Panel on Climate Change and Institute for Global Environmental Strategies were used for estimating the GHG emissions from waste management. It was estimated that the current waste management sector generated approximately 2,000 gigagrams of CO2-eq per year in 2018, trending around 3,350 Gg of CO2-eq per year in 2025. It was also observed that out of the proposed scenarios, Scenario-2 significantly minimized the environmental impacts, with the lowest GHG emissions and highest waste resource recovery. Moreover, the GHG emissions from business-as-usual practices could be reduced by 50% by this scenario during 2018-2025. The target of the similar scenario could be achieved if the local government could efficiently implement waste management in the future.